Главная страница
Навигация по странице:

  • 7.МЕЖКЛЕТОЧНЫЕ СОЕДИНЕНИЯ: РАЗНОВИДНОСТИ, УЛЬТРАСТРУКТУРНАЯ ОРГАНИЗАЦИЯ, ЗНАЧЕНИЕ

  • 8.Лизосомы: строение, значение. Аппарат внутриклеточного переваривания.

  • ВЗАИМООТНОШЕНИЯ КЛЕТКИ С ВНЕШНЕЙ СРЕДОЙ. ЭКЗОЦИТОЗ И ЭНДОЦИТОЗ: ВИДЫ И МЕХАНИЗМЫ.

  • гистология. Принцип строения мембранных органелл


    Скачать 59.81 Kb.
    НазваниеПринцип строения мембранных органелл
    Дата21.01.2021
    Размер59.81 Kb.
    Формат файлаdocx
    Имя файлагистология.docx
    ТипДокументы
    #170292
    страница2 из 3
    1   2   3

    Значение:

    7.МЕЖКЛЕТОЧНЫЕ СОЕДИНЕНИЯ: РАЗНОВИДНОСТИ, УЛЬТРАСТРУКТУРНАЯ ОРГАНИЗАЦИЯ, ЗНАЧЕНИЕ

    Межклеточные соединения – соединения между клетками, образованные при помощи белков.

    1) соединения простого типа

    • Простой контакт - соединение клеток за счет пальцевидных впячиваний и выпячиваний цитоплазматических мембран соседних клеток. Специфических структур, формирующих контакт, нет.

    Простые контакты занимают наиболее обширные участки соприкасающихся клеток. Расстояние между билипидными мембранами соседних клеток составляет 15-20 нм, а связь между клетками осуществляется за счет взаимодействия макромолекул соприкасающихся гликокаликсов. Гликопротеиды соседних клеток при образовании простого контакта «узнают» клетки одного типа. Наличие этих белков-рецепторов (кадгерины, интегрины и др.) характерно для определенных тканей. Они реагируют только с соответствующими им клетками. Например, Е-кадгерины участвуют в образовании контактов только между эпителиальными клетками, обеспечивая их соединение практически по всей поверхности контактирующих клеток.

    Посредством простых контактов осуществляется слабая механическая связь - адгезия, не препятствующая транспорту веществ в межклеточных пространствах.

    2) соединения сцепляющего типа

    • Десмосома - один из типов межклеточных контактов, обеспечивающих прочное соединение клеток. Они обнаружены в различных тканях позвоночных и беспозвоночных животных - эпителиях, эндотелии, мезотелии, в культуре печеночных клеток, а также между отростками одной и той же клетки.

    Десмосомы образуются между клетками тех тканей, которые могут подвергаться трению, растяжению и другим механическим воздействиям. В межклеточной щели в области десмосомы располагается электронно-плотный слой, образованный взаимодействующими молекулами интегральных гликопротеинов плазмолемм соседних клеток. Со стороны цитоплазмы к десмосомам прикрепляются промежуточные филаменты, которые формируют в цитоплазме сеть, обладающий большой прочностью на разрыв. Через десмосомы промежуточные филаменты соседних клеток объединяются в непрерывную сеть, охватывающую всю ткань.

    Десмосома состоит из белков клеточной адгезии из семейства кадгеринов и соединительных (адапторных) белков, которые соединяют их с промежуточными филаментами. Белки клеточной адгезии, формирующие десмосомы- десмоглеин и десмоколлин. Как и другие кадгерины, эти трансмембранные белки имеют по пять внеклеточных доменов и являются кальцийсвязывающими. Они обеспечивают гомофильное соединение клеток - между собой соединяются две одинаковые по строению молекулы белка. Внутриклеточный белок десмоплакин (при участии еще двух белков, плакофиллина и плакоглобина) соединяет внутриклеточные домены десмоглеина с промежуточными филаментами.

    Плакоглобин (белок с молекулярной массой 83 кД, обнаруживающийся в адгезионных межклеточных контактах) возможно является центральным пунктом в формировании десмосомы и прикреплении цитокератиновых филаментов. Тип промежуточных филаментов зависит от типа клеток: в большинстве эпителиальных клеток к десмосомам прикреплены кератиновые промежуточные филаменты; в клетках сердечной мышцы - десминовые промежуточные филаменты.

    • Адгезионный поясок - парное образование в виде ленты, опоясывающей апикальную часть клетки однослойных эпителиев. С цитоплазматической стороны около мембраны видно скопление плотного вещества, к которому примыкает слой тонких (6-7 нм) филаментов, лежащих вдоль плазматической мембраны в виде пучка, идущего по всему периметру клетки.

    Тонкие филаменты относятся к актиновым фибриллам, они связываются с плазматической мембраной посредством белка катенина, образующего плотный около мембранный слой.

    Функциональное значение такого ленточного соединения заключается на только в механическом сцеплении клеток друг с другом: при сокращении актиновых филаментов в ленте может изменяться форма клетки.

    • Полудесмосома, или гемидесмосома - Они обнаружены в тканях млекопитающих, амфибий и костистых рыб. Полудесмосома по своей структурной организации напоминает десмосому, разрезанную по межклеточной щели Но в отличие от десмосом, соединяющих мембраны соседних эпителиальных клеток, гемидесмосомы присоединяют базальную поверхность эпителиальных клеток к подлежащей базальной мембране, тем самым, однако, также, как и десмосомы , функционируя в качестве заклепок, распределяющих силы натяжения или разрыва, но уже на подлежащую эпителий соединительную ткань . В то время как промежуточные филаменты, ассоциированные с десмосомами, латерально прикрепляются к десмосомным бляшкам, многие из промежуточных филаментов, ассоциированных с гемидесмосомами, своими концами погружены в бляшку. Внутриклеточные прикрепляющие белки гемидесмосом отличны от подобных белков десмосом. Трансмембранные линкерные белки гемидесмосом принадлежат к интегриновому семейству рецепторов внеклеточного матрикса.

    Как и десмосомы, гемидесмосомы прикрепляют промежуточные филаменты, однако основным адгезионным рецептором в данном случае является альфа-6 бета-4-интегрин, прикрепляющий ламинин (на ранних этапах развития базальная мембрана состоит в основном из сети ламинина и не содержит (или содержит мало) коллагена типа IV); ламинин, адгезивный гликопротеин - большой (молекулярная масса 850000) гибкий комплекс из длинных полипептидных цепей, ассоциированных в форме асимметричного креста и удерживаемых вместе при помощи дисульфидных связей. Содержит несколько функциональных доменов: связывающиеся с коллагеном типа IV, с гепаран сульфатом, с энтактином, c рецепторами ламинина на клеточной поверхности к базальной пластинке. Остальные белки, составляющие гемидесмосому, также уникальны, хотя и отчасти гомологичны десмосомальным белкам.

    • Фокальные контакты - Они встречаются у многих клеток и особенно хорошо изучены у фибробластов. Они построены по общему плану со сцепляющими лентами, но выражены в виде небольших участков - бляшек на плазмолемме. В этом случае трансмембранные линкерные белки-интегрины специфически связываются с белками внеклеточного матрикса (например с фибронектином). Со стороны цитоплазмы эти же гликопротеиды связаны с примембранными белками, куда входит и винкулин, который в свою очередь связан с пучком актиновых филаментов.

    Функциональное значение фокальных контактов заключается как в закреплении клетки на внеклеточных структурах, так и создании механизма, позволяющего клеткам перемещаться.

    3) соединения запирающего типа

    • Плотное соединение характерно для однослойных эпителиев. Это зона, где внешние слои двух плазматических мембран максимально сближены. Часто видна трехслойность мембраны в этом контакте: два внешних осмофильных слоя обеих мембран как бы сливаются в один общий слой толщиной 2-3 нм. Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран.

    Было обнаружено, что точки соприкосновения мембран представляют собой ряды глобул. Это белки окклудин и клаудин, специальные интегральные белки плазматической мембраны, встроенные рядами. Такие ряды глобул или полоски могут пересекаться так, что образуют на поверхности скола как бы решетку или сеть.

    Этот тип соединений характерен для эпителиев, особенно железистых и кишечных.

    4) соединения коммуникационного типа

    • Нексус - Представляет собой область протяженностью 0,5 - 3 мкм, где плазмолеммы разделены промежутком в 2 - 3 нм. Со стороны цитоплазмы никаких специальных примембранных структур в данной области не обнаруживается, но в структуре плазмалемм соседних клеток друг против друга располагаются специальные белковые комплексы - коннексоны.

    В зонах щелевого контакта может быть от 10 - 20 до нескольких тысяч коннексонов в зависимости от функциональных особенностей клеток. Они состоят из шести субъединиц коннектина - трансмембранного белка с молекулярным весом около 30 тыс. Объединяясь друг с другом, коннектины образуют цилиндрический агрегат - коннексон, в центре которого располагается канал. Отдельные коннексоны встроены в плазматическую мембрану так, что прободают ее насквозь. Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки так, что каналы двух коннексонов образуют единое целое.

    Коннексоны играют роль прямых межклеточных каналов, по которым могут диффундировать вещества из клетки в клетку с молекулярным весом не более 1-1,5 тыс. и размером не более 1,5 нм

    • Синапсы - участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому. В принципе подобного рода функциональная нагрузка, передача импульса может осуществляться и другими типами контактов (например, щелевым контактом в сердечной мышце), однако в синаптической связи достигается высокая эффективность в реализации нервного импульса.

    В синапсе различают несколько составных частей (рис 9):

    а) пресинаптическая мембрана (ПреМ): представляет собой расширенное окончание клетки (нейрона). Именно здесь располагаются многочисленные синаптические пузырьки (везикулы), окруженные мембраной структуры диаметром от 10 до 90 нм, содержащие химическое вещество (медиатор или нейромедиатор). Пресинаптическая мембрана представляет собой участок плазмалеммы, непосредственно контактирующий с соседней клеткой;

    б) синаптическая щель: участок межклеточного пространства, отделяющий пресинаптическую клетку от постсинаптической;

    в) постсинаптическая мембрана (ПоМ): образована участком плазматической мембраны другой клетки, содержит встроенные белковые молекулы - рецепторы, способные обратимо связываться с нейромедиатором, вызывая впоследствии генерацию электрического импульса в постсинаптическом нейроне.

    5) Септированнные соединения

    • Плазмодесмы - Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки. Диаметр этих каналов обычно составляет 20-40 нм. Ограничивающая эти каналы мембрана непосредственно переходит в плазматические мембраны соседствующих клеток. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки.

    Таким образом, у некоторых растительных клеток плазмодесмы соединяют гиалоплазму соседних клеток, поэтому формально здесь нет полного разграничения, отделения тела одной клетки от другой, это скорее представляет собой синцитий: объединение многих клеточных территорий с помощью цитоплазматических мостиков.

    Внутрь плазмодесм могут проникать мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума соседних клеток. Образуются плазмодесмы во время деления клетки, когда строится первичная клеточная оболочка (см. ниже). У только что разделившихся клеток число плазмодесм может быть очень велико (до 1000 на клетку), при старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки.

    Функциональная роль плазмодесм очень велика: с их помощью обеспечивается межклеточная циркуляция растворов, содержащих питательные вещества, ионы и другие соединения. По плазмодесмам могут перемещаться липидные капли.

    Через плазмодесмы происходит заражение клеток растительными вирусами. Однако эксперименты показывают, что свободный транспорт через плазмодесмы ограничивается частицами с массой не более 800 дальтон

    8.Лизосомы: строение, значение. Аппарат внутриклеточного переваривания.

    Лизосомы (ранее называемые вторичными лизосомами) - орга­неллы, активно участвующие в завершающих этапах процесса внутри­клеточного переваривания захваченных клеткой макромолекул посред­ством широкого спектра литических ферментов при низких значениях рН (5.0 и ниже). Они формируются с участием поздних эндосом. Диа­метр лизосом обычно составляет 0.5-2 мкм, а их форма и структура могут существенно варьировать в зависимости от характера перевари­ваемого материала. Как и в случае гидролазных пузырьков, они досто­верно идентифицируются только на основании выявления в них гидро­литических ферментов. Название отдельных видов лизосом основано на наличии в их просвете морфологически распознаваемого материала;

    в его отсутствие используется общий термин лизосома. После перевари­вания содержимого лизосомы образующиеся низкомолекулярные вещес­тва диффундируют через ее мембрану в гиалоплазму.

    1) Фаголизосома формируется путем слияния поздней эндосомы или лизосомы с фагосомой, называемой также гетерофагосомой (от греч. heteros - другой, phagein - поедать и soma - тело) - мембранного пузырька, содержащего материал, захваченный клеткой извне и подле­жащий внутриклеточному перевариванию; процесс разрушения этого материала называется гетерофагией;

    2) Аутофаголизосома образуется при слиянии поздней эндосомы или лизосомы с аутофагосомой (от греч. autos - сам, phagein - поедать и soma - тело) - мембранным пузырьком, содержащим собственные ком­поненты клетки, подлежащие разрушению. Процесс переваривания это­го материала называют аутофагией, Источником мембраны, окружаю­щей клеточные компоненты, служит грЭПС.

    3) Мультивезикулярное тельце (от лат. multi - много и vesicula -пузырек) представляет собой крупную (диаметром 200-800 нм) сфери­ческую окруженную мембраной вакуоль, содержащую мелкие (40-80 нм) пузырьки, погруженные с светлый или умеренно плотный матрикс. Оно образуются в результате слияния ранних эндосом с поздней, причем мелкие пузырьки формируются, вероятно, путем отпочковывания внутрь от мембраны вакуоли. Матрикс тельца содержит литические ферменты и, очевидно, обеспечивает постепенное разрушение внутренних пузырь­ков.

    4) Остаточные тельца - лизосомы, содержащие непереваренный материал, которые могут длительно находиться в цитоплазме или выде­лять свое содержимое за пределы клетки. Распространенным типом ос­таточных телец в организме человека являются липофусциновые грану­лы - мембранные пузырьки диаметром 0.3-3 мкм, содержащие трудно-растворимьш коричневый эндогенный пигмент липофусцин. Под элек­тронным микроскопом липофусциновые гранулы представляют собой структуры вариабельной формы, содержащие липидные капли, плотные гранулы и пластинки. В связи с их накоплением в некоторых клетках (нейронах, кардиомиоцитах) при старении, липофусцин рассматривают как "пигмент старения" или "изнашивания".

    Секреция лизосомальных ферментов за пределы клетки осу­ществляется у остеокластов - клеток, разрушающих костную ткань, а также фагоцитов (нейтрофилов и макрофагов) при внеклеточном пе­реваривании различных объектов. Избыточная секреция этих ферментов может приводить к повреждениям окружающих тканей.

    Роль гетерофагии в нормальной деятельности клеток и значение ее нарушений. Гетерофагия играет очень важную роль в функции клеток всех тканей и органов. Дефицит тех или иных лизо-сомальных ферментов (обычно обусловленный наследственными анома­лиями) может приводить к развитию ряда заболеваний, вызванных на­коплением в клетках непереваренных веществ (чаще всего гликогена, гликолипидов, гликозаминогликанов), которые нарушают их функцию (болезни накопления). При наиболее распространенных заболеваниях, относящихся к этой группе, повреждаются нейроны, макрофаги, фибро-бласты и остеобласты, что клинически проявляется разнообразными по тяжести нарушениями строения и функции скелета, нервной системы, печени, селезенки.

    В почке в результате гетерофагии клетки захватывают белки из просвета канальцев и расщепляют их до аминокислот, которые далее возвращаются в кровь. Гетерофагия в клетках щитовидной железы (ти-роцитах) обеспечивает отщепление йодсодержащих гормонов от белко­вой матрицы и последующее всасывание их в кровь. Нарушение процес­са гетерофагии в указанных клетках вызывает тяжелые расстройства функции этих органов.

    Особое значение Гетерофагия имеет для клеток, осуществляющих защитную функцию, в основе деятельности которых лежит поглощение извне и переваривание частиц или веществ. Так, фагоциты (макрофаги и нейтрофильные лейкоциты) захватывают и переваривают микроорга­низмы, попадающие в ткани макроорганизма или на их поверхность (на­пример, эпителия слизистых оболочек). При отсутствии или недостаточ­ной активности лизосомальных ферментов, разрушающих микробы (на­пример, при ряде генетически обусловленных нарушений), эти клетки неспособны эффективно осуществлять защитные функции, что приво­дит к развитию тяжелых хронических воспалительных заболеваний.

    Наиболее патогенные микроорганизмы ускользают от повреждаю­щего действия фагоцитов, осуществляя это различным образом. Так, од­ни (например, возбудитель проказы) обладают устойчивостью к дейст­вию лизосомальных ферментов; другие микробы (например, возбуди­тель туберкулеза) способны подавлять процесс слияния фагосом с ли-зосомами, некоторые могут ускользать от разрушения, разрывая мем­браны фагосом или лизосом.

    Роль аутофагии в нормальной деятельности клеток и значе­ние ее нарушений. Аутофагия обеспечивает постоянное обновление ("омоложение") клеточных структур благодаря перевариванию участков цитоплазмы, митохондрий, скоплений рибосом, фрагментов мембраны (убыль которых компенсируется их новообразованием). Этот процесс обновления в клетке тонко отрегулирован, причем каждый ее компо-

    нент имеет определенную продолжительность жизни. Так, в нейронах пожилого человека, которые функционировали на протяжении многих десятилетий, большинство органелл не старше 1 мес. В клетках печени (гепатоцитах) большая часть цитоплазмы разрушается менее, чем за 1 нед. В некоторых случаях аутофагия может служить реакцией клетки на недостаточное питание. Частным случаем аутофагии является крино-фагия (от греч. krinein - отделяю, секретирую) - лизосомальное разру­шение избытка невыведенного секрета в железистых клетках.ВЗАИМООТНОШЕНИЯ КЛЕТКИ С ВНЕШНЕЙ СРЕДОЙ. ЭКЗОЦИТОЗ И ЭНДОЦИТОЗ: ВИДЫ И МЕХАНИЗМЫ.

    Гликокаликс (поверхностный слой животных клеток) выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами.

    Плазматическая мембрана образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды.

    На поверхности микроворсинок происходит интенсивное переваривание и всасывание переваренной пищи.

    1)Эндоцитоз - транспорт макромолекул, их комплексов и частиц внутрь клетки. При эндоцитозе определенный участок плазмалеммы захватывает, как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую за счет впячивания мембраны. В дальнейшем такая вакуоль, соединяя с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

    Эндоцитоз разделяют на фагоцитоз (захват и поглощение твердых частиц) и пиноцитоз (поглощение жидкости). Путем эндоцитоза осуществляется питание гетеротрофных протистов, защитные реакции организмов (лейкоциты поглощают чужеродные частицы) и др.

    2)Экзоцитоз (экзо — наружу), благодаря нему, клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли, или пузырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Так выделяются пищеварительные ферменты, гормоны, гемицеллюлоза и др.
    1   2   3


    написать администратору сайта