Главная страница
Навигация по странице:

  • Реферат

  • Радиолокаци о нная ст а нция

  • Появление и развитие РЛС

  • Помехи работе радиолокационных станций

  • Контррадиопротиводействие

  • Защита радиоэлектронных средств от помех

  • Гражданское применение научных достижений и открытий в радиолокации. В послевоенное время радиолокация продолжала развиваться, появились новые области её применения. 1

  • Современный этап развития Радиолокационных станций в России.

  • Реферат. Реферат УНИД. Радиолокационная станция (рлс)


    Скачать 151.98 Kb.
    НазваниеРадиолокационная станция (рлс)
    АнкорРеферат
    Дата27.08.2021
    Размер151.98 Kb.
    Формат файлаdocx
    Имя файлаРеферат УНИД.docx
    ТипРеферат
    #228042


    Министерство образования и науки Российской Федерации

    ФГАОУ ВО «Северо-восточный федеральный университет имени М.К.Аммосова »

    Физико-технический институт

    Кафедра: «Радиотехника»


    Реферат
    Тема: Радиолокационная станция (РЛС)

    Выполнил: студент 1-го курса Саввин Василий Вячеславович

    Проверил: Антонов Степан Романович


    Якутск 2019

    Содержание



    Введение

    Радиолокационная станция (РЛС), радиолокатор, радар, устройство для наблюдения за различными объектами (целями) методами радиолокации. Основные узлы РЛС — передающее и приёмное устройства, расположенные в одном пункте (т. н. совмещенная РЛС) или в пунктах, удалённых друг от друга на некоторое (обычно значительное) расстояние (двух- и многопозиционные РЛС); в РЛС, применяемых для пассивной радиолокации, передатчик отсутствует. Антенна может быть общей для передатчика и приёмника (у совмещенной РЛС) или могут применяться раздельные антенны (у многопозиционных РЛС). Важная составная часть приёмного устройства РЛС (после собственно приёмника) — световой индикатор на электроннолучевой трубке (ЭЛТ), а в современных (середины 70-х гг.) РЛС наряду с индикатором — ЦВМ, автоматизирующая многие операции по обработке принятых сигналов. Основные характеристики РЛС: точность измерений, разрешающая способность, предельные значения ряда параметров (максимальная и минимальная дальность действия, сектор и время обзора и др.), помехоустойчивость. К основным характеристикам относят также мобильность РЛС, её массу, габариты, мощность электропитания, срок службы, количество обслуживающего персонала и многие др. эксплуатационные параметры.

    Появление и развитие РЛС

    Первые РЛС были станциями обнаружения самолётов. 5 стационарных импульсных РЛС было установлено на юго-западном побережье Великобритании в 1936. Они работали на сравнительно длинных (метровых) волнах, были весьма громоздки и не могли обнаруживать самолёты, летевшие на малой высоте. Тем не менее вскоре цепочка таких станций была установлена вдоль всего английского побережья Ла-Манша; она показала свою эффективность при отражении налётов немецкой авиации во время 2-й мировой войны 1939—45. В США опытная импульсная РЛС была установлена на корабле и прошла всесторонние испытания в 1937. После этого работы по созданию РЛС различного назначения получили в США бурное развитие, и к началу 40-х гг. были созданы РЛС сантиметрового диапазона волн для обнаружения самолетов, летящих на большом удалении.

      В СССР первые опыты по радиообнаружению самолётов были проведены в 1934. Промышленный выпуск первых РЛС, принятых на вооружение, был начат в 1939. Эти станции (РУС-1) с непрерывным излучением, модулированным звуковой частотой, располагались цепочкой вдоль некоторой линии и позволяли обнаруживать самолёт, пересекающий эту линию. Они были применены на Карельском перешейке во время советско-финляндской войны 1939—40 и на Кавказе во время Великой Отечественной войны 1941—45. Первая импульсная радиолокационная установка была испытана в 1937. Промышленный выпуск импульсных РЛС (РУС-2, «Редут») начался в 1940. Эти станции имели одну приёмо-передающую антенну и помещались вместе с источником электропитания в кузове автомашины. Они позволяли обнаруживать самолёты при круговом обзоре воздушного пространства на расстояниях (в зависимости от высоты полёта) до 150 км. В 1940 Ленинградским физико-техническим институтом (руководитель работ Ю. Б. Кобзарев)было закончено сооружение стационарной РЛС для системы ПВО. Антенны станции располагались на большой высоте (20 м), что обеспечивало большую дальность обнаружения ( 250 км) и давало возможность обнаруживать сравнительно низко летящие самолёты. Во время Великой Отечественной войны, кроме станций «Редут», было развёрнуто производство надёжных портативных станций «Пегматит», которые можно было легко перевозить в упакованном виде и быстро устанавливать в любом помещении. Впоследствии станции «Пегматит» были усовершенствованы так, что они позволили определять, кроме дальности и азимута самолёта, его высоту. В конце войны совершенствование РЛС происходило в направлении как повышения дальности их действия и точности измерений, так и автоматизации отдельных операций посредством автоматических следящих систем для измерения дальности и слежения по угловым координатам (в станциях орудийной наводки), автоматических счётных устройств (в станциях для «слепого» бомбометания) и т.д.

      После 2-й мировой войны, с развитием авиации (повышением высоты, скорости полёта и манёвренности самолётов), появилась необходимость создания РЛС, способных работать в условиях сложной обстановки — при большом количестве объектов и действии умышленных помех. Повышение точности измерения координат (в т. ч. благодаря новым методам их измерения), сопряжение РЛС с вычислительными машинами и общей системой радиоуправления снарядами-ракетами существенно изменили технические и тактические параметры РЛС, ставших важнейшим звеном автоматизированной системы управления средствами ПВО.

      Появление в 50—60-х гг. ракетной и космической техники привело к созданию РЛС для решения ряда новых задач. Были разработаны разнообразные РЛС для решения многих задач науки и народного хозяйства.

    Основные типы РЛС.

    РЛС различают прежде всего по конкретным задачам, выполняемым ими автономно или в комплексе средств, с которыми они взаимодействуют, например: РЛС систем управления воздушным движением, РЛС обнаружения или наведения зенитных управляемых ракет систем ПВО, РЛС для поиска космических летательных аппаратов (КЛА) и сближения с ними, самолётные РЛС кругового или бокового обзора и т.д. Специфика решения отдельных задач и их широкий спектр привели к большому разнообразию типов РЛС. Например, для повышения точности стрельбы по самолётам в головках зенитных снарядов устанавливают миниатюрные РЛС, измеряющие расстояние от снаряда до объекта и приводящие в действие (на определённом расстоянии) взрыватель снаряда; для своевременного предупреждения самолёта о приближении со стороны его «хвоста» др. самолёта на нём устанавливают РЛС «защиты хвоста», автоматически вырабатывающую предупредительный сигнал.

      В зависимости от места установки РЛС различают наземные, морские, самолётные, спутниковые РЛС и т.д. РЛС подразделяют также по техническим характеристикам: по несущей частоте (рабочему диапазону длин волн) — на РЛС метрового, дециметрового (ДМ), сантиметрового (СМ), миллиметрового (ММ) и др. диапазонов; по методам и режимам работы — на РЛС импульсные и с непрерывным излучением, когерентные и с некогерентным режимом работы и т.д.; по параметрам важнейших узлов РЛС — передатчика, приёмника, антенны и системы обработки принятых сигналов, а также по др. техническим и тактическим параметрам РЛС.

      РЛС точного измерения координат, называются станциями орудийной наводки (СОН), определяют с высокой степенью точности координаты (азимут, угол места, дальность) воздушных, морских и наземных объектов. Для зенитной артиллерии появление этих станций означало техническую революцию. Резкое повышение точности измерения координат, в первую очередь угловых, стало возможным после освоения СМ диапазона волн, позволившего формировать в СОНах посредством антенн высоконаправленное излучение радиоволн. При этом резко повысилось использование излучаемой мощности в нужных направлениях и удалось в значительной мере избавиться от влияния Земли, местных предметов и ряда др. помех работе РЛС.

      Использование СМ диапазона позволило создать панорамные самолётные РЛС кругового обзора земной поверхности сыгравшие важную роль во время 2-й мировой войны при решении задачи «слепого» бомбометания, а также при поиске и уничтожении на море подводных лодок. Для этих станций характерна высокая степень различения отдельных деталей на земной поверхности (мостов, сооружений, железных дорог и т.д.) или на море (перископов подводных лодок и т.п.).

      Освоение СМ диапазона привело также к созданию РЛС обнаружения самолетов и наведения на них самолётов-перехватчиков, которые, используя данные, полученные от РЛС дальнего обнаружения, или работая автономно, обнаруживают самолёты и одновременно измеряют их координаты — дальность, азимут и высоту полёта (например, т. н. методом V-луча). Для реализации этого метода применяют 2 антенны, одна из которых имеет диаграмму направленности, узкую по азимуту и широкую в вертикальной плоскости, а другая — диаграмму направленности такой же формы, но отклоненную от вертикальной плоскости на угол, равный 45°.При совместном вращении обеих антенн азимут и дальность объекта определяются посредством первой антенны, а высота — по промежутку времени, через который объект фиксируется второй антенной.

      РЛС бокового обзора, предназначенные для картографирования земной поверхности, решения задач воздушной разведки и т.д., имеют высокую разрешающую способность, определяющую качество радиолокационного изображения, его детальность. Это достигается либо значительным увеличением размера антенны, располагаемой вдоль фюзеляжа самолёта, что позволяет увеличить разрешающую способность по сравнению с панорамными РЛС кругового обзора на порядок, либо применением метода искусственного раскрыва антенны, позволяющего приблизиться к разрешающей способности оптических средств наблюдения; при этом разрешающая способность не зависит от дальности наблюдения и длины волны зондирующего сигнала. В РЛС с искусственным раскрывом антенны часто используют сложные оптические системы многоканальной (по дальности) обработки сигналов с когерентным накоплением их в каждом канале. Сопряжение таких систем с фотографическими устройствами позволяет получать высококачественную запись информации.

      РЛС систем ПРО крупных городов и промышленных объектов (в США, по данным иностранной печати) образуют радиолокационный комплекс, включающий РЛС обнаружения, сопровождения и опознавания целей и РЛС наведения противоракет, работающие главным образом в СМ, реже в ДМ диапазонах волн. Такая многофункциональная РЛС содержит несколько сотен передатчиков с импульсной мощностью каждого от 0,1 до 1 вт,фазированную антенную решётку, работой которой управляет ЦВМ, несколько тыс. параметрических усилителей, установленных во входных цепях приёмников. За рубежом существуют проекты наземных систем ПРО на основе применения мощных лазеров, предназначенных для поражения целей. Такие системы должны работать совместно со средствами автоматического слежения и фокусировки лазерного луча высокой интенсивности, в том числе с РЛС грубого слежения, обеспечивающей получение ориентировочных данных о приближающейся цели, с РЛС на лазерах для точного слежения за целью и с системой распознавания истинной цели при наличии ложных целей. Благодаря возможности получения узкого луча и малым габаритам РЛС на лазерах их предполагается применять также на КЛА и спутниках.

      РЛС слежения за искусственными спутниками 3емли (ИСЗ) и измерения их траекторий различают прежде всего по составу и количеству измеряемых параметров. В простейшей однопараметрической РЛС ограничиваются измерением только доплеровской частоты по характеру изменения которой в месте расположения РЛС определяют период обращения ИСЗ и др. параметры его орбиты. Орбиту ИСЗ можно точно определить, применив на трассе полёта ИСЗ несколько РЛС СМ диапазона, например точных импульсных РЛС — радиодальномеров, работающих с ответчиком на борту ИСЗ, у которого нестабильность задержки ответного импульса относительно мала. Эти РЛС с параболическими антеннами обеспечивают в режиме слежения определение угловых координат ИСЗ с точностью порядка нескольких угловых минут при коническом сканировании и порядка 1 угловой минуты при моноимпульсном методе. Т. о., эти трёхпараметрические РЛС являются некоторым развитием СОН, отличаясь от них построением основного канала автодальномера, многошкальностью и сохранением высокой точности слежения по дальности (ошибка измерения при космических скоростях объекта порядка 10 м).Импульсный режим позволяет реализовать одновременную работу нескольких РЛС с одним ответчиком. Применяют и четырёхпараметрические РЛС с когерентным ответчиком на борту, в которых дополнительное измерение радиальной скорости космических объектов обеспечивается при более простом режиме непрерывных колебаний. Сохранение импульсного режима и измерение радиальной скорости по частоте Доплера требует применения в РЛС импульсного когерентного режима, при котором вместо простого магнетронного передатчика применяется СВЧ усилитель мощности (например, на клистроне) и более сложный импульсный когерентный ответчик. Станции, измеряющие 6 параметров движения объекта — дальность, 2 угловые координаты и 3 их производные (т. е. радиальную и 2 угловые скорости), — применяют, например, при измерениях этих параметров, осуществляемых из одного пункта на активном участке полёта ракеты или КЛА. Сложность таких РЛС связана с построением многих каналов точного фазового измерения угловых координат (точность 10 угловых секунд).

      Другое направление использования РЛС для слежения за ИСЗ с высотой полёта в несколько сотен км и измерения их траектории основано на применении точных пеленгаторов ДМ диапазона со значительно более простыми (неследящими) антеннами фазовых угломерных каналов, обладающими в этом диапазоне достаточной эффективной площадью, а также экономичных и простых бортовых передатчиков, работающих в режиме непрерывных колебаний.

      Для слежения за ИСЗ на расстояниях 40 тыс. км (стационарные ИСЗ или ИСЗ с эллиптической орбитой типа «Молния») применяют РЛС со следящими (по программе полёта — в ДМ диапазоне и автоматически — в СМ диапазоне) полноповоротными параболическими антеннами.

      Планетная РЛС, измеряющая расстояние до планеты, параметры её движения и др. физические характеристики, отличается большой эффективной поверхностью антенны, большой мощностью передатчика и высокой чувствительностью приёмного устройства. Длительность зондирующего сигнала таких РЛС ограничена временем прохождения радиоволн от Земли до планеты и обратно, которое равно, например, для Венеры 5 мин, для Марса 10 мин и для Юпитера 1 ч. Так, в планетной РЛС, посредством которой сотрудники института радиотехники и электроники АН СССР изучали Марс, дальномерные измерения проводились фазовым методом по огибающей колебаний с несущей частотой 768 Мгц, модулированных по амплитуде колебаниями с частотами 3 и 4 гц, а измерения радиальной составляющей скорости — доплеровским методом на несущей частоте. Принимаемый сигнал во время сеансов наблюдения запоминался (записывался магнитофоном), а задержка огибающей принятого сигнала определялась (в процессе его многократного воспроизведения за пределами сеанса связи) корреляционным методом — по максимуму выходного сигнала коррелометра при различных задержках опорного сигнала. Величина доплеровского смещения частоты определялась при помощи селективных электрических фильтров, настроенных на определённые резонансные частоты.

      3агоризонтные РЛС, используемые (в США, по данным иностранной печати) в декаметровом (коротковолновом) диапазоне волн для наблюдения на расстояниях в несколько тысяч км (например, с целью раннего обнаружения пусков баллистических ракет и грубого определения их координат, обнаружения ядерных взрывов, наблюдения за различными областями ионосферы, за полётом ИСЗ и т.д.), представляют собой наземные стационарные установки со сложными большими антеннами типа многоэлементных антенных решёток и мощными передатчиками с импульсной мощностью несколько десятков Мвт. Как правило, такие РЛС двух- или многопозиционные. Для них характерны многоканальное построение (например, со 120 и более каналами в диапазоне частот 4—6 Мгц), возможность устанавливать различные длительности импульсных сигналов и частоту их повторения и соответственно регулировать ширину полосы частот в приёмнике и др. характеристики, находя оптимальный режим в зависимости от состояния ионосферы и характера поставленной задачи.

    Помехи работе радиолокационных станций

    Помехой работе радиолокационной станции может быть всякая электромагнитная энергия, попавшая в приемник станции через антенну и мешающая выделению отраженного от цели сигнала на выходе приемника. Помехи могут иметь различное происхождение. Это могут быть естественные помехи: отражения от местных предметов, облаков, излучение передатчиков, работающих на частоте, близкой к частоте РЛС и др. Мы далее будем рассматривать только организованные (умышленные) помехи, создаваемые специально для подавления работы радиолокационных станций.

    Организованные помехи делятся на пассивные, создаваемые отражателями, и активные, излучаемые специальной аппаратурой.

    Пассивные помехи

    Применение пассивных помех основано на явлении отражения, или вторичного излучения радиоволн.

    Первое применение пассивных помех было очень эффектным. Во время налета английских бомбардировщиков на Гамбург операторы немецких РЛС системы противовоздушной обороны были поражены необычным явлением. Отраженные от самолетов импульсы, наблюдаемые на экранах индикаторов РЛС, начали постепенно расползаться, необычно увеличиваясь по амплитуде, и через некоторое время заняли большую часть экрана. Работа системы ПВО была дезорганизована. В этом налете англичане потеряли самолетов в несколько раз меньше, чем в предыдущих налетах. Так в июле 1943 г. были впервые применены пассивные помехи в виде металлизированных лент. Ниже приведены изображения с экрана индикатора РЛС “Вюрцбург” без помех и при наличии пассивной помехи.



    Это индикатор с кольцевой разверткой по дальности. Дальность до цели определяется по длине дуги от начала развертки (на верху индикатора) до отметки от цели.

    На индикаторе кругового обзора (ИКО) отметки от искусственных отражателей тоже затрудняют наблюдение за отметками от реальных целей. Искусственные отражения могут создавать на ИКО картину, похожую на действительную, и оператор видит большое количество целей, многие из которых являются ложными. При большом количестве искусственных отражателей отметки от них сливаются в одно изображение, и наблюдать отметки от целей вообще становится невозможным.

    Величина отраженного от металлизированной ленты сигнала зависит от ее длины. Если длина ленты lравна половине длины волны электромагнитного колебания, то вследствие резонансных явлений в ленте возбуждаются интенсивные колебания, и она становится вторичным излучателем электромагнитной энергии. Небольшие отклонения от резонансной частоты (на  5 – 10 %) мало уменьшают эффективность воздействия помех. Большие отклонения от резонансной частоты значительно снижают эффективность помех, особенно если ленты намного короче половины длины волны. Так, ленты длиной около 25 см, предназначенные для создания помех работе станций 50-и см диапазона волн, будут слабо воздействовать на станции метрового диапазона. Правда, отражение от лент и в этом случае будет, но оно будет носить не резонансный, а диффузный характер и иметь небольшую интенсивность.

    Ленты должны обладать достаточной механической прочностью, чтобы при сбрасывании с самолетов встречный поток воздуха не сминал их и не деформировал, так как иначе будут потеряны резонансные свойства и эффективность воздействия снизится. Особенно это относится к лентам большой длины, предназначенным для создания помех работе станций метрового диапазона волн.

    Контррадиопротиводействие

    В условиях осуществления противником радиопротиводействия устойчивая работа радиоэлектронных средств может быть обеспечена только проведением специальных мер. К таким мерам относятся: уничтожение средств радиопротиводействия противника; радиомаскировка, проводимая с целью затруднить противнику вести радиоразведку; а также защита радиоэлектронных средств от радиопомех. Не останавливаясь на первой мере, поясним подробнее последние.

    Радиомаскировка

    Основные направления радиомаскировки:

     сокращение до минимума времени излучения, радиолокационного контакта РЛС и цели;

     уменьшение ширины диаграммы направленности антенных устройств радиоэлектронных средств;

     изменение рабочих частот радиоэлектронных средств, быстрая перестройка по частоте;

     применение помехозащищенных видов модуляции, сложных сигналов с внутриимпульсной модуляцией.

    Коротко охарактеризуем эти направления.

    Сокращение времени излучения ограничивает время, в течение которого разведывательный приемник должен обнаружить радиосигнал и измерить его параметры. Системам связи рекомендуется работать короткими сеансами с применением шифровки. Соединениям и частям, местонахождение которых должно быть скрыто, рекомендуется соблюдать полное радиомолчание и вместо радио применять другие средства связи.

    Этому требованию совершенно не удовлетворяют применявшиеся в годы второй мировой войны и в послевоенные годы станции орудийной наводки , осуществлявшие “физическое” сопровождение одной единственной цели, когда цель захватывалась лучом радиолокатора и уже не выпускалась им. Такие РЛС непрерывно облучали цель, то есть осуществлялся постоянный радиолокационный контакт РЛС и цели. Такую РЛС очень легко уничтожить, направив по ее лучу ракету.

    В современных РЛС операции обнаружения и сопровождения целей совмещены. Сопровождение целей (не одной, а многих) ведется по данным радиолокационных измерений обзорных РЛС. Это сопровождение “виртуальное”, математическое и сводится к построению траекторий целей. Время радиолокационного контакта сведено к минимуму – времени, в течение которого цель находится в луче обзорной РЛС.

    Уменьшение ширины диаграммы направленности одновременно с уменьшением уровня бокового излучения сужает пространственную область, в которой разведывательный приемник может принимать и анализировать сигналы радиоэлектронных средств. Особенное внимание уделяется уровню бокового излучения (уровню боковых лепестков диаграммы направленности), потому что по этим направлениям могут воздействовать помехи.

    Перестройка по частоте, в особенности быстрая перестройка в большом диапазоне частот, позволяет радиосредствам некоторое время (время, в течение которого средствами радиоразведки будет определено новое значение частоты и настроен на эту частоту передатчик помех) работать без помех. Это предъявило новые требования к аппаратуре помех. Теперь уже недостаточно, чтобы передатчик помех имел большую мощность и широкие пределы перестройки по частоте, необходимо также, чтобы эта перестройка осуществлялась быстро.

    Защита радиоэлектронных средств от помех

    Методы и устройства защиты от помех основаны на использовании частотных, амплитудных, поляризационных различий сигналов и помех, а также различий в отражающих свойствах целей и искусственных отражателей.

    Во время второй мировой войны для защиты от помех радиоэлектронная аппаратура снабжалась специальными устройствами или приставками, которые обеспечивали защиту от помех без дополнительной переделки аппаратуры. Сейчас аппаратура защиты от помех объединяется в единую конструктивную систему с радиоэлектронными средствами, что делает их более надежными и мобильными.

    Универсальным средством защиты от помех является использование селекции сигналов: пространственной, поляризационной, временной, частотной, амплитудной. Так, частотная селекция используется в радиолокационных системах защиты от пассивных помех. Так как скорость ленточных отражателей много меньше скорости самолета, то для разделения их можно использовать различие в доплеровской частоте, что и делается в системах селекции движущихся целей (СДЦ).

    Гражданское применение научных достижений и открытий в радиолокации.

    В послевоенное время радиолокация продолжала развиваться, появились новые области её применения.

    1.Радиолокация в геодезии

    В настоящее время на земном шаре еще имеются места, точная географическая карта которых не составлена. В последнее время для геодезических работ в этих районах была использована радиолокация.

    Как известно, задача геодезистов может быть выполнена путем измерения расстояний между выбранными пунктами в исследуемом районе. Такая работа особенно сложна, когда опорные пункты находятся на большом расстоянии друг от друга. Тут и пришла на помощь радиолокация.

    Геодезисты помещали около двух выбранных пунктов маяки. Самолет с радиолокационной станцией поднимался с аэродрома и направлялся на пересечение линии, соединяющей оба пункта. Импульсы самолетного радиолокатора принимались приемниками маяков и ретранслировались. Так как время, необходимое на ретрансляцию, было заранее известно, то приход импульсов маяков к самолету позволял измерять расстояния до них. Сумма этих расстояний автоматически записывалась. Ясно, что в момент пролета над прямой линией, соединяющей на карте оба пункта, сумма измеряемых расстояний должна быть наименьшей. Если высота полета, а также высоты расположения маяков известны, то с помощью всех этих величин легко вычисляется и расстояние между пунктами.

    С помощью такой радиолокационной системы можно измерять расстояния между пунктами, удаленными на сотни километров.

    2.Радиолокация в метеорологии

    В метеорологии, например, с помощью новой техники осуществляется ряд важнейших наблюдений. Известно, что в сантиметровом диапазоне с укорочением волны начинают заметно ощущаться отражения от скоплений водяных паров. Поэтому с помощью соответствующих радиолокаторов можно заблаговременно обнаруживать скопления облаков, приближение дождя, грозового фронта и т. д. Такие предупреждения имеют очень большое значение на линиях воздушных сообщений, а также для метеорологической службы.

    Радиолокаторы применяются для наблюдения за шарами-пилотами, которые используются метеорологами для определения скорости и направления ветра. Раньше оптические методы делали невозможным наблюдение за шарами на очень больших высотах, за облаками. Теперь же все эти затруднения отпали. Для лучшей видимости к шару-пилоту прикрепляется специальный металлический отражатель.

    3.Радиолокация в биологии

    Радиолокацию стали использовать и в биологии, получая важные сведения о движении больших стай птиц и скоплений насекомых.

    4.Радиолокация в гражданской авиации

    Радиолокаторами, стали оснащать аэропорты, пассажирские самолёты и морские суда, что позволяло им уверенно двигаться в условиях темноты, облачности и тумана.

    На самолетах радиолокаторы используют для решения ряда задач, в том числе для определения высоты полета относительно земли. В аэропортах один радиолокатор служит для управления воздушным движением, а другой - радиолокатор управления заходом на посадку - помогает пилотам посадить самолет в условиях плохой видимости.

    5 .Радиолокация в астрономии

    Широкое развитие получила радиолокационная астрономия — область науки, в которой радиолокационную технику применяют для изучения космического пространства и планет.

    В 1946 г. де Витт в США и 3. Бай в Венгрии провели опыты по радиолокационному исследованию Луны.

    В 1961 г. российские учёные под руководством академика В. А. Котельникова впервые использовали радиолокацию для изучения Венеры. Методами радиолокации установили, например, что поверхность Венеры изобилует кратерами, на ней есть горы высотой до 10 000 м, а сутки там почти в 59 раз длиннее земных. Уточнённые карты поверхности Венеры были составлены в 1984 г., после того как на Землю пришли данные радиолокационных измерений, выполненных с помощью советских космических аппаратов «Венера-15» и «Венера-16».

    Существует научный проект, согласно которому в XXI в. начнёт работать Галактическая радиолокационная система. Космические корабли, оснащённые совершенными РЛС, смогут удаляться от Земли на огромные расстояния, а учёные будут получать новую информацию о космических объектах, находящихся за пределами Солнечной системы.

    6. Радиолокация на воде

    Океанские суда используют радиолокационные системы для навигации.

    Служба береговой охраны США применяет радиолокационно-телевизионную навигационную систему "Ратан" для получения телевизионно-радиолокационного изображения на подходах к гавани Нью-Йорка.

    На промысловых траулерах радиолокатор находит применение для обнаружения косяков рыбы.

    Современный этап развития Радиолокационных станций в России.

    В области радиолокации отечественная наука и техника остаются на лидирующих позициях, об этом позволяет судить уровень созданных в нашей стране РЛС. Один из известных американских ученых, ознакомившись не так давно с бортовой РЛС «Заслон», принятой на вооружение истребителя МиГ-31 около 30 лет назад, сказал примерно следующее: «Понятно, что было сделано, но не понятно, как вы тогда сделали это». РЛС комплексов противовоздушной и противоракетной обороны до сих пор уникальны.

    Хотя в последнее десятилетие темп разработок резко снизился. Но научные исследования не прекратились. Используя созданный прежде задел и современные алгоритмы обработки информации, удалось настолько повысить эффективность радиолокационного наблюдения, что еще недавно это могло бы показаться фантастикой. Этому способствовало также внедрение микропроцессорной техники и «продвижение» обработки в цифре вплоть до антенн. Цифровые приемники, начинающие обработку сигнала с промежуточной частоты, — одна из характерных черт современной радиолокации.

    Радиолокация становится радиолокацией предельных характеристик. Все шире используются сверхширокополосные сигналы, сверхдлинные и сверхкороткие импульсы. Диапазон используемых длин волн — от сверхдлинных до миллиметровых, дальность действия — от сантиметров и метров до десятков тысяч и более километров. Точности и разрешения приближаются к оптическим.

    При проектировании РЛС сейчас особое внимание уделяется решению задачи оптимизации расходования ресурсов. Обнаружить и распознать объект необходимо прежде всего за счет создания эффективных алгоритмов обработки информации.

    Заключение

    Появлением радиолокации можно считать рубеж 19-20 вв. И по сути, этой области наук чуть больше века, но столь стремительное ее развитие привело нас к тому, что мы уже не можем даже и представить свое существование без нее в нашем повседневном быту, и что уж говорить о ее военном значении.

    С развитием общества, человеческие потребности растут все больше. Следовательно, перед радиолокацией появляются новые задачи и новые направления, а значит и усовершенствование методов, оборудования системы радиолокации. Нескоро для ученых и изобретателей к данной области будет потерян интерес, который подогревается и научным прогрессом, с одной стороны, и коммерческой заинтересованностью, с другой.

    Список литературы

    1. Кириллов С.Н., Виноградов О.Л., Лоцманов А.А. Алгоритмы адаптации цифровых фильтров в радиотехнических устройствах. Учебное пособие. Рязань. РГРТА, 2004. 80с.

    2. Кириллов С.Н., Дмитриев В.Т. Алгоритмы защиты речевой информации в телекоммуникационных системах. Учебное пособие с грифом УМО.Рязань. РГРТА, 2005. 128с.

    3. Радиотехнические методы передачи информации: Учебное пособие для вузов / В.А.Борисов, В.В.Калмыков, Я.М.Ковальчук и др.; Под ред. В.В.Калмыкова. М.: Радио и связь. 1990. 304с.

    4. Системы радиосвязи: Учебник для вузов / Н.И.Калашников, Э.И.Крупицкий, И.Л.Дороднов, В.И.Носов; Под ред. Н.И.Калашникова. М.: Радио и связь. 1988. 352с.

    5. Бартон Д., Радиолокационные системы, пер. с англ., М., 1967; Леонов А. И., Радиолокация в противоракетной обороне, М., 1967; Радиолокационные станции бокового обзора, под ред. А. П. Реутова, М., 1970; Мищенко Ю. А., Загоризонтная радиолокация, М., 1972.


    написать администратору сайта