Главная страница

Теория-биология-_шпаргалки_. Растительная клетка, ее строение


Скачать 0.98 Mb.
НазваниеРастительная клетка, ее строение
Дата05.12.2021
Размер0.98 Mb.
Формат файлаdoc
Имя файлаТеория-биология-_шпаргалки_.doc
ТипДокументы
#292166
страница12 из 13
1   ...   5   6   7   8   9   10   11   12   13

Мейоз


Мейоз - особый вид деления клеток, в результате которого образуются гаметы - половые клетки с гаплоидным набором хромосом. Мейоз представляет собой два последовательных деления в процессе гаметогенеза. Оба деления мейоза включают те же фазы, что и митоз: * профазу,

* метафазу, * анафазу, * телофазу. Перед первым делением клетки в интерфазе происходит удвоение ДНК. Первое мейотическое деление: В профазе начинается спирализация хромосом. Затем хромосомы каждой гомологичной пары соединяются друг с другом по всей длине и переплетаются. Этот процесс называется конъюгацией. Во время конъюгации происходит обмен участками генов гомологичных хромосом (кроссинговер). После конъюгации гомологичные хромосомы отталкиваются друг от друга, но сохраняют связи в местах кроссинговера. В метафазе первого деления хромосомы гомологичных пар располагаются в плоскости экватора. В анафазе к полюсам клетки расходятся целые хромосомы, каждая из которых содержит две хроматиды. В дочерние клетки попадает только одна из каждой пары гомологичных хромосом. Второе мейотическое деление:

Ему не предшествует синтез ДНК, т. к. интерфазы практически нет. После короткой профазы в метафазе второго деления к хромосомам, состоящим из двух хроматид, прикрепляются нити веретена деления. В анафазе к полюсам клетки расходятся хроматиды и в каждой дочерней клетке оказывается по одной дочерней хромосоме. Таким образом, в половых клетках количество хромосом уменьшается вдвое. Биологическое значение мейоза заключается в уменьшении числа хромосом вдвое и образовании гаплоидных гамет. Слияние гаплоидных клеток при оплодотворении восстанавливает в зиготе диплоидный набор хромосом. Перекомбинация генов, осуществляемая в мейозе, приводит к внутривидовой изменчивости.

Половое и бесполое размножение организмов Размножение - это свойство живых организмов воспроизводить себе подобных, в основе которого лежит передача наследственной информации от родителей потомству. Размножение обеспечивает преемственность между поколениями, увеличение численности особей в популяции и их расселение на новые территории, существование вида в целом. Половое размножение осуществляется при помощи специализированных половых решеток. В отличие от соматических клеток тела, половые клетки (гаметы), имеют гаплоидный (одинарный) набор хромосом. При слиянии двух половых клеток восстанавливается диплоидный (двойной) набор хромосом. Половое размножение имеет очень большое эволюционное преимущество перед бесполым, т. к. основано на новых комбинациях генов, обеспечивающих приспособление вида к меняющимся условиям среды. Оплодотворение - это процесс слияния половых клеток с образованием зиготы - диплоидной клетки, с которой начинается индивидуальное развитие организма. У особей разных видов существуют свои особенности оплодотворения. Мхам и папоротникам для оплодотворения необходима водная среда. У животных оплодотворение может быть внешним и внутренним. При внешнем оплодотворении гаметы выделяются в водную среду в большом количестве, т. к. большая их часть гибнет. Внутреннее оплодотворение обеспечивает большую вероятность встречи родительских гамет. Женские гаметы - яйцеклетки, образуются в половых органах женских особей. У цветковых растений яйцеклетка образуется в семяпочках завязи, у голосеменных - в семенных зачатках женских шишек. Яйцеклетки крупнее сперматозоидов, т. к. содержат запас питательных веществ, необходимых для зародыша. Они неподвижны. В процессе созревания яйцеклетки покрываются оболочками. Их функция - защита яйцеклетки и зародыша от внешних неблагоприятных воздействий. Мужские гаметы - сперматозоиды, образуются в семенниках- мужских половых железах. Их функции состоят в доставке яйцеклетке генетической информации и стимуляции ее развития. После завершения мейоза мужская половая клетка подвергается изменениям: аппарат Гольджи на переднем конце головки преобразуется в акросому, выделяющую ферменты для растворения мембраны яйца; митохондрии группируются вокруг жгутика, образуя шейку.

Эмбриональное развитие животных Независимо от способа размножения, начало новому организму дает одна клетка, содержащая наследственные задатки и обладающая всеми характерными признаками и свойствами целого организма. Индивидуальное развитие заключается в постепенной реализации наследственной информации, полученной от родителей.

Начало эволюционной эмбриологии положили русские ученые А.О. Ковалевский и И. И. Мечников. Они впервые обнаружили три зародышевых листка и установили принципы развития беспозвоночных и позвоночных животных. Онтогенезом, или индивидуальным развитием, называется весь период жизни особи с момента образования зиготы до гибели организма.

Онтогенез делится на два периода: * эмбриональный период: от образования зиготы до рождения или выхода из яйцевых оболочек; * постэмбриональный период: от выхода из яйцевых оболочек или рождения до смерти организма.

Стадии эмбрионального развития (на примере ланцетника):

  1. Дробление - многократное деление зиготы путем митоза. Образование бластулы - многоклеточного зародыша.

  2. Гасптруляция - образование двухслойного зародыша - гаструлы с наружным слоем клеток (эктодермой) и внутренним, выстилающим полость (эктодермой). У многоклеточных животных часто вслед за образованием двухслойного зародыша, возникает третий зародышевый слой - мезодерма, который находится между экто-и энтодермой. Зародыш становится трехслойным. Сущность процесса гаструляции заключается а перемещении клеточных масс. Клетки зародыша практически не делятся и не растут. Появляются первый признаки дифференцировки клеток.

  3. Органогенез - образование комплекса осевых органов: нервной трубки, хорды, кишечной трубки, мезодермальных сомеитов. Дальнейшая дифференцировка клеток приводит к возникновению многочисленных производных зародышевых листков - органов и тканей. Из эктодермы формируются: нервная система, кожа, органы зрения и слуха. Из энтодермы формируются: кишечник, легкие, печень, поджелудочная железа. Из мезодермы - хорда, скелет, мышцы, почки, кровеносная и лимфатическая системы. В ходе органогенеза одни зачатки влияют на развитие других зачатков (эмбриональная индукция). Взаимодействие частей зародыша является основой его целостности. В период эмбрионального развития зародыш очень чувствителен к влиянию факторов среды. Такие вредные воздействия, как алкоголь, табак, наркотики, могут нарушить ход развития и привести к различным уродствам. Постэмбриональное или послезародышевое развитие начинается с момента рождения или выхода из яйцевых оболочек и длится до смерти организма. Оно бывает двух типов: прямое и непрямое.

При прямом развитии родившиеся потомки во всем сходны с взрослыми особями, обитают в той же среде и питаются той же пищей, что обостряет внутривидовую конкуренцию (птицы, пресмыкающиеся, млекопитающие, некоторые насекомые и др.). При непрямом развитии новый организм появляется на свет в виде личинки, претерпевающей в своем развитии ряд превращений - метаморфозов (амфибии, многие насекомые). Метаморфоз связан с разрушением личиночных органов и возникновением органов, присущих взрослым животным. Например, у головастика в процессе метаморфоза, происходящего под влиянием гормона щитовидной железы, исчезает боковая линия, рассасывается хвост, появляются конечности, развиваются легкие и второй круг кровообращения. Значение метаморфоза:

  1. Личинки могут самостоятельно питаться, расти и накапливать вещества для формирования постоянных органов, обитая в среде, нехарактерной для взрослых особей.

  2. Личинки могут играть важную роль в расселении организмов. Например, личинки двухстворчатых моллюсков.

  3. Разная среда обитания снижает интенсивность внутривидовой борьбы за существование. Непрямое развитие особей является важным приспособлением,

возникшим в ходе эволюции

Общая биология

Оgroup 62746 сновы генетики. Законы наследственности Генетика — наука, изучающая закономерности наследственности и изменчивости. Мендель, проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибриднологический метод анализа наследования признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками; анализ исследованных признаков у гибридов без учета остальных; количественный учет гибридов.

Проводя моногибридное скрещивание (скрещивание по одной паре альтернативных признаков), Мендель установил закон единообразия первого поколения. Он гласит: при скрещивании двух гомозиготных организмов, отличающихся по одной паре альтернативных признаков, первое поколение гибридов единообразно как по фенотипу, так и по генотипу. Этот закон так же называют законом доминирования, т. к. один из признаков проявляется, а другой - подавлен. Если потомков первого поколения скрестить между собой, то во втором поколении исчезнувший в первом поколении признак проявляется вновь. Это явление получило название второго закона Менделя или закона расщепления. Он гласит: при скрещивании гибридов первого поколения между собой, во втором поколении наблюдается расщепление доминантных и рецессивных признаков в соотношении 3 :1. Генотипы второго поколения - АА, Аа, Аа, аа, то есть наблюдается соотношение 1:2:1.

Расщепление признаков в потомстве при скрещивании гетерозиготных особей объясняется тем, что гаметы генетически чисты, несут только один ген из аллельной пары. При образовании половых клеток в каждую гамету попадает только один ген из аллельной пары (закон чистоты гамет). Цитологической основой расщепления признаков при моногибридном скрещивании является расхождение гомологичных хромосом к разным полюсам клетки и образование гаплоидных половых клеток в мейозе.

Генотип - совокупность генов организма, взаимодействующих между собой.

Фенотип - совокупность внешних признаков организма. В опытах Мендель использовал разные способы скрещивания: моногибридное, дигибридное и полигибридное. При последнем скрещивании особи отличаются более чем по двум парам признаков. Во всех случаях соблюдается закон единообразия первого поколения, закон расщепления признаков во втором поколении и закон независимого наследования. Закон независимого наследования: каждая пара признаков наследуется независимо друг от друга. В потомстве идет расщепление по фенотипу 3 :1 по каждой паре признаков. Закон независимого наследования справедлив лишь в том случае, если гены рассматриваемых пар признаков лежат в различных парах гомологичных хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления генов.

Поведение любых пар негомологичных хромосом в мейозе не зависит друг от друга. Расхождение: их к полюсам клетки носит случайный характер. Независимое наследование имеет, большое значение для эволюции; так как является источником комбинативной наследственности.

Сцепленное наследование Организм любого вида имеет большое разнообразие признаков, которое обеспечивается тысячами генов. В то же время число хромосом невелико, так у человека их всего 23 пары. Следовательно, в каждой хромосоме располагаются сотни и тысячи генов. Наследование признаков, гены которых находятся в одной хромосоме, исследовал американский генетик Т. Морган. Гены, расположенные в одной хромосоме, называют группой сцепления. Количество групп сцепления в клетке равно гаплоидному набору хромосом. Закон сцепленного наследования, открытый Морганом, гласит: гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Дальнейшие исследования Моргана показали, что сцепление не всегда бывает абсолютным. Причина тому — кроссинговер (обмен участками между гомологичными хромосомами), который происходит в профазе первого деления мейоза. Кроссинговер нарушает группы сцепления генов и ведет к появлению особей с перекомбинацией признаков. Частота кроссинговера зависит от расстояния между генами: чем ближе располагаются гены в хромосоме, тем меньше вероятность кроссинговера между ними и наоборот. Эта зависимость используется, для составления генетических карт хромосом, где по вероятности кроссинговера рассчитывается положение генов, в хромосоме. Расстояние между генами определяется по формуле: X = (A + C)/N x100, где X — расстояние между генами, А и С - количество кроссовертных особей, N - общее число особей.

Половые хромосомы и аутосомы. Генотип Аутосомы - парные хромосомы, одинаковые для мужских и женских организмов. В клетках тела человека 44 аутосомы (22 пары).

Половые хромосомы - хромосомы, содержащие гены, определяющие половые признаки организма. В кариотипе (качественном и количественном наборе хромосом) женщин половые хромосомы одинаковые. В кариотипе мужчины - 1 одна крупная равноплечая половая хромосома, другая - маленькая палочковидная хромосома. Половые хромосомы женщин обозначают XX, а мужские половые хромосомы - XY. Женский организм формирует гаметы с одинаковыми половыми хромосомами (гомогаметный организм), а мужской организм формирует гаметы неодинаковые по половым хромосомам (X и Y). У птиц, бабочек и некоторых видов рыб гомогаметен мужской пол. У петуха кариотип обозначается XX, а у курицы - XY. Генотип - это система взаимодействующих генов. Взаимодействуют между собой как аллельные, так и неаллельные гены. Примером взаимодействия аллельных генов является неполное доминирование, т. е. промежуточный характер проявления признака. Так, скрещивание двух растений ночной красавицы - одного с красными, а другого с белыми цветами - дает в потомстве растения с розовыми цветами. Развитие признака организма находится обычно под контролем многих генов, например окраска шерсти животных. При скрещивании черного (ААвв) и белого (ааВВ) кроликов появляются серые кролики (АаВв). Причина новообразования: за окраску шерсти отвечают гены Аа (А - черная шерсть, а - отсутствие окраски), за распределение пигмента подлине волос - гены Вв (В - пигмент скапливается у корней волос, в - пигмент равномерно распределяется по длине волоса). Это пример на взаимодействие неаллельных генов, называемое комплементарностью. Часто ген определяет развитие нескольких признаков организма. Это явление называется плейотропией. Например, у человека есть ген, который отвечает одновременно за развитие дефекта ногтей и коленной чашечки. У растений пигмент, отвечающий за образование красного цветка, вызывает также удлинение стебля, увеличение массы семян. Взаимодействие и множественное действие генов - основа целостности генотипа. Методы изучения наследственности человека Действие законов наследственности распространяются и на человека. У человека в кариотипе 46 хромосом (23 пары), что обеспечивает огромные комбинативные возможности, Можно сказать, что каждый человек на Земле уникален и не похож на других, за исключением однояйцовых близнецов. У человека существует много болезней, обусловленных наследственными факторами. Их диагностика имеет важное значение для лечения и профилактики. Для изучения наследственности человека существуют следующие методы: * Генеалогический метод - составление и изучение родословных у нескольких поколений. Например, установлено, что развитие некоторых способностей у человека (музыкальность, математическое мышление) определяется наследственными факторами. Генеалогическим методом выявлена наследственная природа таких заболеваний, как нарушение углеводного обмена (сахарный диабет), врожденная глухота, шизофрения, гемофилия, дальтонизм. * Близнецовый метод - изучение развития признаков у однояйцевых близнецов, в особенности если они живут в разных условиях. Однояйцевые близнецы всегда одного пола, имеют одинаковый генотип. Этим методом изучается роль генотипа и среды в формировании признаков организма. * Цитогенетический метод - изучает кариотип человека для выявления хромосомных и геномных мутаций. Этим методом выявляется болезнь Дауна. Ее причина - наличие в кариотипе человека одной лишней хромосомы (по 21 паре), что приводит к патологии: у больных узкие глаза, плоское лицо и резко выраженная умственная отсталость. Рождение детей с синдромом Дауна - результат отклонений в ходе мейоза.

Изменчивость, ее формы и значение Изменчивость - это способность организма приобретать новые признаки в процессе онтогенеза. Различают наследственную и ненаследственную изменчивость. Ненаследственная или модификационная изменчивость не затрагивает наследственного материала организма, носит групповой характер, происходит в пределах нормы реакции. Норма реакции - свойство генотипа обеспечивать в определенных пределах развитие данного онтогенеза в зависимости от меняющихся условий среды. Например, капуста в жарких странах не завязывает кочана, продуктивность животных падает при плохом уходе. Одни признаки (например, молочность, вес) могут обладать широкой нормой реакции, другие (окраска шерсти)— узкой. Таким образом, организмом наследуется не признак, а способность организма (его генотипа) в результате взаимодействия с условиями среды давать определенный фенотип или, иначе говоря, наследуется норма реакции организма на внешние условия. Если некоторое количество организмов расположить в порядке возрастания или убывания признака (например, длины), то получится ряд изменчивости данного признака, слагающийся из отдельных вариант, называемый вариационным рядом. Варианта — это единичное выражение развития признака. Размах вариаций и частоту встречаемости отдельных вариант изучают с помощью вариационной кривой - графического выражения изменчивости признака. Используя данные кривой, определяют среднюю величину данного признака. Модификационная изменчивость дает возможность особям приспосабливаться к постоянно меняющимся условиям среды.

Виды наследственной изменчивости: * Наследственность - это свойство живых организмов сохранять и передавать признаки в ряду поколений. Благодаря наследственности из поколения в поколение сохраняются признаки вида, породы. * Наследственная изменчивость (мутационная или генотипическая) связана с изменением генотипа особи, поэтому возникающие изменения наследуются. Она является материалом для естественного отбора. Дарвин назвал эту наследственность неопределенной. Основой наследственной изменчивости являются мутации - внезапные скачкообразные и ненаправленные изменения исходной формы. Они ведут к появлению у живых организмов качественно новых наследственных признаков и свойств, которых ранее в природе не существовало. Источник наследственной изменчивости - мутационный процесс. Различают несколько типов мутаций: геномные, хромосомные и генные. * Геномные мутации (полиплоидия и анеуплоидия) - это изменения числа хромосом. Полиплоидия - это кратное увеличение гаплоидного набора хромосом (Зn, 4n, и т.д.). Чаще всего полиплоидия образуется при нарушении расхождения хромосом к полюсам клетки в мейозе или митозе под действием мутагенных факторов. Она широко распространена у растений и крайне редко встречается у животных. * Анеуплоидия — увеличение или уменьшение числа хромосом по отдельным парам. Она возникает при нерасхождении хромосом в мейозе или хроматид в митозе. Анеуплоиды встречаются у растений и животных и характеризуются низкой жизнеспособностью.

* Хромосомные мутации - это изменения структуры хромосом.

Различают следующие виды хромосомных мутаций:

  1. Дефишенсия - потеря концевых участков хромосом.

  2. Делеции - выпадение участка плеча хромосом.

  3. Дупликация - повторение набора генов в определенном участке хромосомы. 4. Инверсия - поворот участка хромосом на 180°.

5. Транслокация - перенос участка к другому концу той же хромосомы либо к другой, негомологичной хромосоме. * Генные мутации - изменения нуклеотидной последовательности молекулы ДНК (гена). Их результат — изменение последовательности аминокислот в полипелтидной цепи, и появление белка с новыми свойствами. Большая часть генных мутаций фенотипически не проявляется, поскольку они рецессивны. * Цитоплазматические мутации - связаны с изменениями органоидов цитоплазмы, содержащих ДНК (митохондрии и пластиды). Эти мутации наследуются по материнской линии, т.к. зигота при оплодотворении всю цитоплазму получает от яйцеклетки. Пример: пестролистность растений связана с мутациями в хлоропластах. Мутации, затрагивающие половые клетки (генеративные мутации), проявляются в следующем поколении. Мутации соматических клеток проявляются в тех органах, которые включают измененные клетки. У животных соматические мутации не передаются по наследству, поскольку из соматических клеток новый организм не возникает. У растений, размножающихся вегетативно, соматические мутации могут сохраняться.

Приспособленность организмов к среде обитания, ее причины Приспособленность - соответствие признаков организма (внутреннего и внешнего строения, физиологических процессов, поведения) среде обитания, позволяющее выжить и дать потомство. Например, водные животные имеют обтекаемую форму тела; лягушку делает незаметной на фоне растений зеленая окраска спины; ярусное расположение растений в биогеоценозе дает возможность эффективно использовать солнечную энергию Для фотосинтеза. Приспособленность помогает выжить организмам в тех условиях, в которых она сформировалась под влиянием движущих сил эволюции. Но и в этих условиях она относительна. Белая куропатка а солнечный день выдает себя тенью. Заяц-беляк, незаметный на снегу, хорошо виден на фоне темных стволов. Видообразование, их микроэволюция - начальный этап эволюции органического мира, заключающийся в появлении новых видов на основе существовавших ранее. Географическое (аллопатрическое) видообразование происходит в результате расширения ареала исходного вида или расчленения его ареала на изолированные части естественными преградами (гора, реки и т.д.). В этом случае популяции встречаются с новыми условиями среды и сообществами организмов. На популяцию в- природе действует мутационный процесс, происходят колебания численности особей, действует естественный отбор. Со временем генный состав популяции изменяется, она приобретает отличия от других популяций этого же вида. Например, сибирская лиственница расселилась от Урала до Байкала и оказалась в разных условиях, что привело к возникновению даурской лиственницы. Экологическое видообразование происходит в тех случаях, когда популяции одного вида остаются в пределах своего ареала, но условия обитания у них оказываются различными. Под влиянием движущих сил эволюции изменяется их генный состав. Через ряд поколений в результате различий генофондов возникает биологическая изоляция. Например, один вид традесканции сформировался на скалистых вершинах, другой - в тенистых лесах; сезонные расы погремка большого дают семена до скашивания, либо после него и, обитая на одной территории, не имеют возможности скрещиваться; популяции форели в озере Севан различаются по срокам нереста. Особенностью экологического видообразования является то, что оно приводит к образованию новых видов, морфологически близких к исходному виду. Сходство видообразований: происходят под действием движущих сил эволюции. Различия: причины расхождения признаков у популяций различны: географическое видообразование связано с расширением ареала и возникновением изолированных популяций, а экологическое с заселением особями одного вида разных экологических ниш в пределах одного ареала. Эволюция как исторический процесс имеет два направления; прогресс и регресс. Биологический прогресс - это результат успеха в борьбе за существование, показатель приспособленности вида, рода, класса. Его признаки: высокая численность, широкий ареал и увеличение числа систематических групп. Например, из млекопитающих прогресс испытывают заяц-русак (около 20 подвидов), паразитические черви из типа Круглые. Биологический прогресс является наиболее общим путем биологической эволюции и имеет след, разновидности: арогенез - приобретение организмами ароморфозов; аллогенез - приобретение особями идиоадаптаций. Биологический регресс - отсутствие необходимого уровня приспособленности, приводящее к уменьшению численности, сужению ареала, снижению числа соподчиненных систематических групп. Биологический регресс может привести к вымиранию. Например, на грани вымирания находятся уссурийский тигр, соболь. Причина регресса: отставание в темпах эволюции группы от скорости изменения внешней среды. Деятельность человека часто приводит к сокращению численности популяций многих видов. Ароморфоз — это изменения в организме, повышающие общий уровень организации и жизнедеятельности особей, способствующие переходу в новую среду обитания. Ароморфоз - это основное направление эволюции, которое приводит к образованию новых систематических групп - классов, типов, отрядов. Приобретенные ароморфозы всегда сохраняются у организмов в ходе эволюции и ведут к постепенному усложнению строения организмов. Идиоадаптация — направление эволюции, в основе которого лежат изменения в организме, способствующие приспособлению к конкретным условиям окружающей среды и не повышающие общего уровня организации особей. Примером идиоадаптаций могут служить покровительственная, маскирующая или предупреждающая окраска, поведение во время размножения, мечение территории, совместная защита от врагов.

Генетика и теория эволюции Мутации составляют основу наследственной изменчивости. Особи с различными мутациями, скрещиваясь между собой, обретают новые сочетания генов. Мутационная изменчивость дает первичный материал для естественного отбора, ведущего к образованию новых видов. Основной формой существования видов является популяция. В генетике популяций наблюдаются закономерности, которые выражаются в законе Харди-Вайнберга: в популяциях из поколения в поколение при свободном скрещивании относительные частоты генов и генотипов не меняются. Закон справедлив при соблюдении следующих условий: популяция должна быть достаточно велика, чтобы обеспечить случайное сочетание генов; должен отсутствовать отбор, благоприятствующий и неблагоприятствующий определенным генам; не должно возникать новых мутаций, не должно происходить миграций особей с иными генотипами из соседних популяций данного вида. В природе эти условия не соблюдаются, что приводит к нарушению равновесия генов в популяции.

Природные популяции при их относительной фенотипической однородности (насыщены разнообразными рецессивными мутациями, которые не проявляются до тех пор, пока остаются гетерозиготными. По достижении достаточно высокой концентрации мутаций рецессивные мутации могут перейти в гомозиготное состояние. Они проявятся фенотипически и попадут под влияние естественного отбора. Каждой популяции характерен свой генофонд (совокупность генов популяции), который дает возможность для быстрого изменения в соответствии с направлением отбора. Различают несколько форм отбора. Движущий отбор - такая форма, при которой действие отбора направлено в определенную сторону, что приводит к сдвигу нормы реакции в одну сторону. Стабилизирующий отбор - форма, ведущая к меньшей изменчивости в постоянных условиях среды. В этом случае отсекаются мутации, расширяющие норму реакции. Обе эти формы отбора тесно связаны друг с другом. Движущий отбор преобразует виды в меняющихся условиях среды, стабилизирующий отбор закрепляет признаки, полезные в относительно постоянных условиях среды.

Додарвиновский период в развитии биологии С установлением христианского мировоззрения в Европе была распространена официальная точка зрения о возникновении живой природы: все живое создано богом и остается неизменным (креационизм). В этот период средневековья было мною попыток систематизировать накопленный биологический материал. Наиболее совершенную систематику того времени удалось создать шведскому естествоиспытателю К. Линнею. В основу систематики он положил принцип иерархичности таксонов - систематических единиц. Линией закрепил использование бинарной номенклатуры для обозначения видов и ввел латинские названия видов. Принципы этой классификации сохраняются и в наше время. C XVII в. распространяется новая система представлений о живой природе - трансформизм, допускающий возможность изменчивости видов под воздействием внешних условий. Ее последователями были Р. Гук, Д. Дидро и др. Открытие микроскопа, развитие эмбриологии и палеонтологии привело к созданию первой эволюционной теории Ж.Б. Ламарка. В труде «Философия зоологии» (1809 г.) он приводит многочисленные доказательства изменяемости видов и пытается раскрыть причины эволюционных процессов. Ламарк впервые включает в теорию фактор времени и условия внешней среды. Движущими силами эволюции он считал стремление организмов к совершенству и прямое влияние внешней среды на наследование признаков, приобретенных в течение жизни.

Ж. Кювье, исследуя строение органов позвоночных животных, установил, что все органы животного представляют собой части одной целостной системы и ни одна часть тела не может измениться без изменения других частей. Это явление он назвал принципом корреляции. Кювье-также выдвинул теорию катастроф, согласно которой причиной вымирания были периодически происходившие крупные геологические катастрофы, уничтожавшие на больших территориях животных и растения.

Множество крупных открытий в естествознании, накопленный экспедиционный материал послужили предпосылками создания эволюционного учения английским ученым Ч. Дарвиным. Он изложил свои взгляды на эту проблему в своем труде «Происхождение видов путем естественного отбора» (1859 г.).

Эволюционное учение Дарвина Ч. Дарвин доказал, что огромное многообразие видов, населяющих Землю, образовалось благодаря постоянно возникающим в природе разнонаправленным наследственным изменениям и естественному отбору. Способность организмов к интенсивному размножению, и одновременное выживание немногих особей привели Дарвина к мысли о наличии между ними борьбы за существование, следствием которой является выживание организмов, наиболее приспособленных к конкретным условиям среды и вымиранию неприспособленных.

Движущие силы эволюции: * Борьба за существование - совокупность многообразных и сложных взаимоотношений, существующих между организмами и условиями среды. Различают борьбу внутривидовую (между особыми одного вида), межвидовую (между особями разных видов) и борьбу с неблагоприятными условиями. Внутривидовая борьба является наиболее острой, так как особи одного вида имеют сходные потребности для выживания. * Естественный отбор - процесс избирательного воспроизведения организмов, происходящий в природе, в результате которого в популяции возрастает доля особей с полезными Дли вида признаками и свойствами в конкретных условиях среды. Творческая роль отбора заключается в том, что в процессе эволюции он сохраняет и накапливает из разнонаправленных мутаций наиболее соответствующие условиям среды и полезные для вида. * Наследственная изменчивость, (мутационная или генотипическая) связана с изменением генотипа особи, поэтому возникающие изменения наследуются. Она является материалом для естественного отбора. Дарвин назвал эту наследственность неопределенной. Источником наследственной изменчивости являются мутации. Образование новых видов начинается в популяциях, насыщенных постоянно возникающими мутациями, которые при свободном скрещивании приводят к изменениям генотипов и фенотипов. Изменение условий существования ведет к расхождению признаков среди особей данной популяции, к дивергенции. Исходная популяция образует группу форм, имеющих различную степень отклонений признаков. Отдельные организмы с измененными признаками способны осваивать новые места обитания, увеличивать свою численность. При движущем отборе наибольшие возможности выжить и оставить плодовитое потомство имеют особи с крайними, контрастными отклонениями. Промежуточные формы больше контактируют и быстрее вымирают. Так в исходной популяции возникают новые группы особей, из которых вначале образуются новые популяции, а затем, при последующей дивергенции, новые подвиды и виды. Принцип дивергенции объясняет происхождение многообразия жизненных форм. Согласно общепринятой классификации, систематической единицей живых организмов является вид. Вид - это группа особей, сходных по строению, происхождению и характеру физиологических процессов; свободно скрещивающихся между собой и дающих плодовитое потомство. Особи одного вида имеют одинаковые приспособления к жизни в определенных условиях. Любой вид, состоящий из одной или нескольких популяций, представляет собой единое целое. Целостность достигается связями между особями вида: заботой о потомстве, общением через различные сигналы, совместной защитой от врагов, скрещиванием. Целостность достигается и биологической изоляцией - обособленностью от других видов (особи разных видов, как правило, не скрещиваются). Все это характеризует вид как надорганизменную систему.

Критерии вида:

  • Морфологический - сходство внешнего и внутреннего строения особей.

  • Физиологический - сходство процессов жизнедеятельности, сроков размножения. * Географический - занимаемый особями вида ареал (территория) характерен для всех особей вида. Он может быть большим или маленьким, прерывистым или сплошным * Экологический - ниша, занимаемая особями одного вида внутри ареала, обусловленная определенными экологическими условиями (влажностью, температурой и т.д.). * Генетический - главный критерий. Это характерный для каждого вида набор хромосом, их определённое число, размеры и форма. Особи разных видов имеют разные наборы хромосом и поэтому не могут скрещиваться, т. к. невозможна конъюгация при мейозе. При установлении видовой принадлежности правильно характеризует вид вся совокупность критериев.


1   ...   5   6   7   8   9   10   11   12   13


написать администратору сайта