Главная страница
Навигация по странице:

  • Лармора, Лоренца, Пуанкаре

  • Время у Ньютона отделено от мира, оно существует независимо от вещей, у Маха оно неразрывно связано с вещами.

  • Альберт Эйнштейн родился 14 марта 1879 г

  • Основополагающая работа Эйнштейна по теории относительности называется «К электродинамике движущихся сред».

  • 2. Каждый луч света движется в «покоящейся» системе координат с определенной скоростью V независимо от того, испускается ли этот луч света покоящимся или движущимся телом».

  • 11.5 Дальнейшее развитие теории относительности

  • 11.6 Макромир . Механическая картина мира. Представления о структуре и уровнях строения материи. Концепция о двух видах материи

  • Дж. Дж. Томсон (1856-1940

  • А.А. Беккерель (1852-1908)

  • Пьер и Мария Кюри

  • Э. Резерфорда (1871-1937)

  • Лекции 3 ЕНКМ. Развитие основных направлений физики в xix в. Естествознание в xix и xx веках


    Скачать 120.51 Kb.
    НазваниеРазвитие основных направлений физики в xix в. Естествознание в xix и xx веках
    Дата30.10.2021
    Размер120.51 Kb.
    Формат файлаdocx
    Имя файлаЛекции 3 ЕНКМ.docx
    ТипЗакон
    #259451
    страница3 из 3
    1   2   3

    11.4 Теория относительности Эйнштейна

    Ньютоновская концепция пространства и времени, на основе которой строилась физическая картина мира, оказалась господствующей вплоть до конца XIX века.

    Электродинамика движущихся сред в теории электронов вела ко многим радикальным выводам, прежде всего к крушению представления о неизменных твердых частичках. Твердых тел и неизменных частиц в природе нет, форма и размеры тел и частиц зависят от скорости движения. От скорости тел зависит и масса частиц, которая обусловлена инерциальным свойством окружающего частицу электромагнитного поля. Именно этот новый взгляд на природу массы и заставил говорить об «исчезновении» материи.

    Все это были, конечно, весьма радикальные изменения в физических воззрениях, ведущие к дальнейшему отходу от привычных представлений, от «явного для нас», ко все более «неявному для нас», новому, непривычному.

    Но вместе с тем электродинамика и электронная теория оставляли неизменным основное представление классической физики о пространстве и времени. Геометрия оставалась евклидовой, время, как у Ньютона, текло повсюду равномерно, само по себе.

    И хотя у Лармора, Лоренца, Пуанкаре время преобразовывалось при переходе от одной системы к другой, это преобразование носило чисто формальный характер и ни в малейшей степени не затрагивало основных представлений о пространстве и времени, которые оставались незыблемыми со времен Ньютона.

    Время у Ньютона отделено от мира, оно существует независимо от вещей, у Маха оно неразрывно связано с вещами.

    Мах, выбрасывая абсолютное пространство и абсолютное движение, по-новому смотрит на закон инерции.

    Эйнштейн позже писал, что «Мах ясно понимал слабые стороны классической механики и был недалек от того, чтобы прийти к общей теории относительности». Но Мах не пришел ни к общей, ни к специальной теории относительности. Он не сумел связать механику с идеями поля, с фактом конечной скорости распространения взаимодействия.

    Принцип Маха, согласно которому движение тела, в том числе и инерциальное движение, определяется взаимодействием на него всех масс Вселенной, предполагает мгновенное воздействие, т. е. силы дальнодействия. Таким образом, критика Махом ньютоновской механики сыграла роль в формировании взглядов Эйнштейна, как об этом писал сам Эйнштейн в письме к Маху. Позитивного перехода к новой механике Мах не нашел.

    Эйнштейн. Альберт Эйнштейн родился 14 марта 1879 г. в Ульме (Германия) в семье мелкого коммерсанта Германа Эйнштейна. Отец в поисках более обеспеченного и устойчивого существования часто переезжал с семьей из города в город, из страны в страну. Альберт не получил законченного среднего образования и в 16 лет пытался поступить в Высшую техническую школу в Цюрихе (Швейцария) Провалившись на вступительных экзаменах, он поступил в кантональную среднюю школу в швейцарском кантоне Аарау. Окончив эту школу в 1896 г., он поступил в ту же Цюрихскую Высшую политехническую школу на педагогический факультет. Учился Эйнштейн неровно. Он не любил обязательных занятий и экзаменов и предпочитал заниматься тем, что его интересовало. Он получил диплом об окончании школы 2 августа 1900 г. Он пробовал заняться педагогической деятельностью. С мая 1901 г. он несколько месяцев преподавал математику в техникуме города Винтертура. В этом же году он опубликовал свою первую работу «Следствия из явлений капиллярности». Потом он проработал несколько месяцев в качестве репетитора и лишь в 1902 г. получил постоянную должность технического инспектора в Швейцарском патентном бюро в Берне. Эту должность он занимал с 23 июня 1902 г. по 15 октября 1909 г. Именно здесь, в Берне, будучи скромным служащим бюро патентов, Эйнштейн стал знаменитым ученым.

    Первые работы Эйнштейна были посвящены молекулярной физике и термодинамике. В ходе этих исследований Эйнштейн создал теорию броуновского движения,( Мариа́н Смолухо́вский) о существовании которого в то время не знал. Статья по этому вопросу—«Новое определение размеров молекул» — появилась в 1905 г. В этом же году в 17-м томе «Annalen der Physik» появилась статья — «Об одной эвристической точке зрения, касающейся возникновения и превращения света», посвященная квантовым свойствам света; в том же томе была опубликована еще одна статья — «К электродинамике движущихся сред», —содержащая основы специальной теории относительности. Каждой из этих трех статей было достаточно, чтобы обессмертить имя их автора.

    В январе 1906 г. Эйнштейн защищает докторскую диссертацию «Новое определение размеров молекул» — первая статья из цикла работ Эйнштейна по броуновскому движению, напечатанных им в 1905-1908 гг. В 1907 г. Эйнштейн создает квантовую теорию теплоемкости.

    В 1908 г. Эйнштейн был утвержден приват-доцентом Бернского университета. В 1909 г. он был избран экстраординарным профессором Цюрихского университета и расстался с бюро патентов.

    В апреле 1911 г. Эйнштейн переехал в Прагу профессором теоретической физики. Через год он снова вернулся в Цюрих, на этот раз профессором Высшей технической школы, в которой когда-то учился. Здесь он пробыл до апреля 1914 г., когда после избрания членом Прусской Академии наук в Берлине переехал в Берлин. Здесь он создал общую теорию относительности, произвел совместно с де Гаазом знаменитый опыт по доказательству существования молекулярных токов Ампера (эффект Эйнштейна—де Гааза). В 1922 г. Эйнштейну была присуждена Нобелевская премия.

    Основополагающая работа Эйнштейна по теории относительности называется «К электродинамике движущихся сред». Название статьи показывает, что она была задумана в русле электродинамики движущихся сред, и вторая часть статьи содержит преобразование уравнений электродинамики Максвелла — Герца для вакуума. Однако основное содержание работы Эйнштейна далеко выходит за рамки электродинамики и содержит новый подход к проблеме пространства и времени. Этим подходом и широкой общей точкой зрения на все, а не только электромагнитные, физические явления статья Эйнштейна существенно отличается от работ Лармора, Лоренца, Пуанкаре и других исследователей по электродинамике движущихся сред.

    Ближе всего к Эйнштейну подошел Пуанкаре. Однако Пуанкаре был непоследовательным в своих выводах. Сформулировав еще в 1902 г. принцип относительности как универсальный закон природы, Пуанкаре полагал вполне возможным отказ от него при наличии новых экспериментальных фактов, опровергающих «постулат относительности». Этим он по существу становился на точку зрения противников теории относительности, жаждавших ее экспериментального опровержения.

    Лишь Эйнштейн понял, что принцип относительности — закон такой же абсолютной силы, как закон сохранения энергии. С таких позиций поиски опытов, оправдывающих теорию относительности, равносильны попыткам построить вечный двигатель. Опыт Майкельсона и его аналоги не могут удастся, так как противоречат теории относительности.

    В XIX в. в физике появляется новое понятие – «поле», что, по словам Эйнштейна, явилось «самым важным достижением со времени Ньютона». Открытие существования поля в пространстве между зарядами и частицами было очень существенно для описания физических свойств пространства и времени. Структура электромагнитного поля описывается с помощью четырех уравнений Максвелла, устанавливающих связь величин, характеризующих электрические и магнитные поля с распределением в пространстве зарядов и токов. Как заметил сам Эйнштейн, теория относительности возникает из проблемы поля.
    Введение «светоносного эфира» окажется при этом излишним, поскольку в предлагаемой теории не вводится «абсолютно покоящееся пространство», наделенное особыми свойствами, а также ни одной точке пустого пространства, в котором протекают электромагнитные процессы, не приписывается какой-нибудь вектор скорости».

    Однако Эйнштейн ни слова не говорит о своих предшественниках. Что он читал по электродинамике движущихся сред? Какие неудавшиеся попытки обнаружить движение Земли он имеет в виду? Что он имеет в виду, когда говорит о том, что принцип относительности уже доказан «для величин первого порядка»? Ответить на эти вопросы трудно. Во всей статье Эйнштейна нет ни одной ссылки на литературу. Позднее Эйнштейн утверждал, что он не знал об опыте Майкельсона, когда писал свою работу. Но если он читал работу Лоренца 1895 г., где доказан принцип относительности первого порядка, о чем он поминает, то он не мог не знать об опыте Майкельсона. Эйнштейн указывал, что он думал над проблемой теории относительности десять лет, начав размышлять еще шестнадцатилетним юнцом. Эти долгие размышления и были главным источником работы. Эйнштейн указывал, что на него наибольшее влияние из опытных фактов оказали во время этих размышлений аберрация и опыты по измерению скорости света в движущейся воде. Этого было, по его мнению, достаточно.

    Следует отметить, что все новые работы Эйнштейна изложены так, что производят впечатление здания, построенного на пустыре: никаких ссылок, никаких указаний на работы предшественников. Публикуя работы по статистической физике, Эйнштейн не знает о существовании статистики Гиббса, публикуя статью по теории броуновского движения, Эйнштейн не знает, что такое движение действительно существует. Поэтому вполне вероятно, что он не знал об опыте Майкельсона и основополагающей работе Лоренца. Но вместе с тем его введение не оставляет сомнения в том, что ему были известны отрицательные результаты попыток обнаружить движение Земли, существование принципа относительности первого порядка. Наконец, его заявление об эфире показывают, что он выступает против концепции абсолютного неподвижного пространства и, таким образом, присоединяется к точке зрения Маха, критикующего эту концепцию Ньютона.

    Все это показывает, что у Эйнштейна были предшественники, о результатах исследований которых он так или иначе был осведомлен. При всей новизне и оригинальности подхода работа Эйнштейна была органически связана с исследованиями по электродинамике движущихся тел, что подчеркнул и сам Эйнштейн не только заглавием, но и целевой установкой своей статьи. Статья Эйнштейна появилась вовремя, она отвечала насущным вопросам физики своего времени.

    Дальнейшую свою теорию Эйнштейн развивает на основе двух постулатов:

    «1. Законы, по которым изменяются состояния физических систем, не зависят от того, к которой из двух координатных систем, движущихся относительно друг друга равномерно и прямолинейно, эти изменения состояния относятся.

    2. Каждый луч света движется в «покоящейся» системе координат с определенной скоростью V независимо от того, испускается ли этот луч света покоящимся или движущимся телом».

    Эти постулаты: принцип относительности и принцип постоянства скорости света—являются основой теории относительности Эйнштейна. Исходя из них, Эйнштейн получает относительность длин и относительность одновременности. Эйнштейн выводит далее из этих постулатов формулы преобразования координат и времени, которые, по предложению Пуанкаре, называются преобразованиями Лоренца, хотя исторически их вернее назвать преобразованиями Лармора — Эйнштейна. Лармор впервые постулировал их в 1900 г. Эйнштейн впервые вывел их в 1905 г

    Во второй части статьи Эйнштейн находит уравнения преобразования для компонент электрического и магнитного поля, закон аберрации и принцип Доплера. Статья заканчивается очерком динамики слабо ускоренного электрона. Здесь Эйнштейн приводит выражения для продольной и поперечной массы и законы движения электрона в электрическом и магнитном полях.

    К статье 1905 г. примыкает небольшая заметка, опубликованная в 18-м томе «Annalen der Physik» за тот же 1905 г. Заметка называется «Зависит ли инерция тела от содержащейся в нем энергии». Так впервые появляется у Эйнштейна знаменитое соотношение между массой и энергией,
    11.5 Дальнейшее развитие теории относительности

    Возвращаясь к теории относительности, следует сказать, что создатель этой теории продолжал совершенствовать и развивать ее. В 1907 г. Эйнштейн опубликовал большую статью «О принципе относительности и его следствиях». Здесь основная идея теории уже не затушевана электродинамикой движущихся сред, хотя именно здесь Эйнштейн впервые упоминает работу Лоренца 1904 г. и опыт Майкельсона—Морли. Вообще эта статья в отличие от первой статьи 1905 г. изобилует ссылками и показывает, что Эйнштейн тщательно следил за развитием созданной им теории, которой к моменту написания статьи исполнилось два года.

    Далее Эйнштейн выводит преобразования координат и времени, которые он не называет преобразованиями Лоренца. Из этих преобразований получаются следствия о масштабах, часах и формула сложения скоростей, а также в применении к оптике аберрация и принцип Доплера. Кинематика теории относительности в этой статье почти повторяет изложение кинематики в статье 1905 г.
    11.6 Макромир. Механическая картина мира. Представления о структуре и уровнях строения материи. Концепция о двух видах материи

    Механический подход к описанию природы оказался необычно плодотворным. На основе ньютоновской механики были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и ряд других теорий. Физика как наука достигала огромных успехов в своем развитии и заняла лидирующее положение среди других наук.

    Два представления о структуре материи были сформулированы примерно 2500 лет назад в античной натурфилософии: атомистическая концепция Демокрита (Демокрит, ок. 469-370 до. н.э. ) и континуальная доктрина Аристотеля (Аристотель, 384-322 до н.э.). По первому представлению материя делима до определенного предела – до атомов, которые могут соединяться различными способами и порождают все многообразие объектов и явлений реального мира. По Демокриту мир образован двумя фундаментальными началами – атомами и пустотой, а материя обладает атомистической структурой

    Данные представления о структуре материи просуществовали вплоть до начала XXв. Атомы рассматривались как плотные образования материи, как предел физического его деления. В рамках атомистической концепции строения материи была развита классическая механика Ньютона, которая доминировала в описании природы вплоть до начала XX в.

    В конце XIX в. после создания Дж. Максвеллом теории электромагнетизма выяснилось, что материя предстает в виде двух форм: дискретного вещества и непрерывного поля.

    Вещество и поле различаются по своей сущности:

      • вещество дискретно и состоит из атомов, а поле непрерывно,

      • вещество обладает массой, а поле – нет,

      • вещество мало проницаемо, а поле полностью проницаемо,

      • скорость движения вещества v<< с (с = 300000 км/с – скорость света), скорость распространения поля равна с.

    Но открытия в физике в конце XIX – начале XX века в итоге привели к созданию квантовой механики, которая фактически разрушила представления классической физики о веществе и поле как двух качественно своеобразных видах материи.

    де Бройль, показал, что не только световые волны обладают дискретной структурой, но и микрочастицам вещества присущ волновой характер (т.н. корпускулярно-волновой дуализм).

    Согласно же представлениям современного естествознания на природу, все природные объекты представляют собой упорядоченные, структурированные и иерархически организованные системы.

    В неживой природе в качестве структурных уровней организации материи выделяют: элементарные частицы, атомы, молекулы, поля, физический вакуум, макроскопические тела, планеты и планетные системы, звезды и звездные системы – галактики, системы галактик – метагалактику.

    В современном естествознании выделяют три уровня строения материи.

    Микромир – мир предельно малых, непосредственно не наблюдаемых микрообъектов от 10-8 до 10-15 см, а время жизни – от бесконечности до 10-24 с.

    Макромир – мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в мм, см, м, км, а время в с, мин, час, год.

    Мегамир – мир огромных космических масштабов и скоростей, расстояние в котором измеряется в парсеках или световых годах, время существования объектов миллиарды лет.

    11.7 Атомная физика

    В конце XIX в. начале XX в. физика выходит на уровень исследования микромира. Научные открытия этого периода опровергают представления об атомах как последних и неделимых структурных элементах материи.

    В 1895 г. Дж. Дж. Томсон (1856-1940) открывает электрон – отрицательно заряженную частицу, входящую в состав всех атомов (определяется масса и величина заряда электрона). Французский физик А.А. Беккерель (1852-1908) открывает явление радиоактивности (1896 г.): случайно обнаруживает при изучении люминесценции, что соли урана излучают без предварительного освещения. Радиоактивное излучение представляет собой самопроизвольное превращение неустойчивых ядер атомов в результате ядерных излучений (альфа-, бета-, гамма-лучей, открытых позднее) в другие ядра химических элементов. Французские физики Пьер и Мария Кюри, изучая явление радиоактивности, открывают новые элементы – полоний и радий.

    Первые модели атома появились в 1904 г.: японский физик Хантаро Нагаока (1865-1950) представил строение атома аналогичным строению Солнечной системы – положительно заряженная часть атома – Солнце, вокруг которой по кольцеобразным орбитам движутся электроны, как планеты вокруг Солнца. В модели Дж. Томсона положительное электричество было «распределено» по сфере, в которую вкраплены электроны.

    Опыты английского ученого Э. Резерфорда (1871-1937) с альфа-частицами (масса альфа частицы примерно составляет 8000 масс электрона) привели к открытию ядра в атоме (1912 г.) – положительно заряженной частицы, размером порядка 10-14 м, в которой фактически сосредоточена вся масса атома (размер же самого атома составляет 10-10 м). Тем самым опыты Резерфорда опровергли модель атома Томсона и подтвердили планетарную модель атома Нагаока.

    Однако планетарная модель атома Резерфорда противоречила законам электродинамики Максвелла, т.к. по законам электродинамики вращающийся вокруг ядра электрон должен был излучать электромагнитные волны, теряя энергию на излучение, электрон должен «упасть на ядро», а атом «прекратить» свое существование. Но в действительности этого не происходит, атомы устойчивы и могут существовать, не излучая электромагнитных волн.

    Датский физик Н. Бор (1885-1962) устраняет возникшее противоречие, выдвижением двух знаменитых постулатов в 1913 г. (постулаты Бора), ставшие основой принципиально новых теорий микромира – квантовой механики и квантовой электродинамики. Свои постулаты он обосновывает идеей М. Планка о существовании квантов электромагнитного поля, развитой затем А. Эйнштейном.

    Но теория Бора фактически была теорией для одного атома – атома водорода. К тому же Н. Бор не объяснил свои знаменитые постулаты, постулаты «сделали атом водорода устойчивым, запретив излучать электромагнитные волны в стационарном состоянии». Теория Бора не могла описывать многоэлектронные атомы, и это связано с волновыми свойствами электрона.
    1   2   3


    написать администратору сайта