Реальные твердые тела
Скачать 0.49 Mb.
|
Министерство образования и науки РФ Федеральное агентство по образованию Государственное образовательное учреждение Профессионального высшего учреждения ОГУ. Доклад На тему: Реальные твердые тела. Выполнила: Пичугина Е.С. Проверила: Петрова Ю.В. Содержание 1. Реальные твердые тела - кристаллы . Точечные дефекты .1 Термодинамика точечных дефектов .2 Миграция точечных дефектов .3 Источники и стоки точечных дефектов .4 Комплексы точечных дефектов . Дислокация . Двумерные дефекты . Трехмерные дефекты . Методы избавления от дефектов . Полезные дефекты . Поликристаллы . Аморфные твердые тела Литература 1. Реальные твердые тела - кристаллы Кристаллы (от греч. κρύσταλλος, первоначально - лёд, в дальнейшем - горный хрусталь, кристалл) - твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку - кристаллическую решётку. Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц (атомов, молекул, ионов). 2. Точечные дефекты К точечным дефектам относят все дефекты, которые связаны со смещением или заменой небольшой группы атомов. Возникают при нагреве, в процессе роста кристалла и в результате радиационного облучения. Могут вноситься также в результате имплантации. Наиболее изучены, включая движение, взаимодействие, аннигиляцию, испарение. · вакансия - свободный, незанятый атомом, узел кристаллической решетки. · примесный атом замещения - замена атома одного типа, атомом другого типа в узле кристаллической решетки. В позициях замещения могут находиться атомы, которые по своим размерам и электронным свойствам относительно слабо отличаются от атомов основы. · примесный атом внедрения - атом примеси располагается в междоузлии кристаллической решетки. В металлах примесями внедрения обычно являются водород, углерод, азот и кислород. В полупроводниках - это примеси, создающие глубокие энергетические уровни в запрещенной зоне, например, медь и золото в кремнии. · межузельный атом - атом основного металла, находящийся в междоузельном положении элементарной ячейки. По типу ближайшего окружения может также варьироваться (4 атома, 6 атомов). · Пара Френкеля - вакансия и межузельный атом. 2.1 Термодинамика точечных дефектов Точечные дефекты повышают энергию кристалла, так как на образование каждого дефекта была затрачена определенная энергия. Упругая деформация обуславливает очень малую долю энергии образования вакансии, так как смещения ионов не превышают 1 % и соответствующая им энергия деформации составляет десятые доли эВ. При образовании межузельного атома смещения соседних ионов могут достигать 20 % от межатомного расстояния, а соответствующая им энергия упругой деформации решетки - нескольких эВ. Основная доля образования точечного дефекта связана с нарушением периодичности атомной структуры и сил связи между атомами. Точечный дефект в металле взаимодействует со всем электронным газом. Удаление положительного иона из узла равносильно внесению точечного отрицательного заряда; от этого заряда отталкиваются электроны проводимости, что вызывает повышение их энергии. Теоретические расчеты показывают, что энергия образования вакансии в ГЦК решетке меди составляет около 1 эВ, а межузельного атома - от 2.5 до 3.5 эВ. Несмотря на увеличение энергии кристалла при образовании точечных дефектов, они могут находиться в термодинамическом равновесии в решетке, так как их образование приводит к росту энтропии. При повышенных температурах рост энтропийного члена TS свободной энергии = U - TS из-за образования точечных дефектов компенсирует рост полной энергии кристалла U, и свободная энергия оказывается минимальной. Равновесная концентрация вакансий: где E0 - энергия образования одной вакансии, k - постоянная Больцмана, T - абсолютная температура. Эта же формула справедлива для межузельных атомов. Формула показывает, что концентрация вакансий должна сильно зависеть от температуры. Формула для расчета проста, но точные количественные значения можно получить, только зная величину энергии образования дефекта. Рассчитать же теоретически эту величину весьма трудно, поэтому приходится довольствоваться лишь приближенными оценками. Так как энергия образования дефекта входит в показатель степени, то это различие обуславливает громадную разницу в концентрации вакансий и межузельных атомов. Так, при 1000 °C в меди концентрация межузельных атомов составляет всего лишь 10-39, что на 35 порядков меньше концентрации вакансий при этой температуре. В плотных упаковках, какие характерны для большинства металлов, очень трудно образовываться межузельным атомам, и вакансии в таких кристаллах являются основными точечными дефектами (не считая примесных атомов). 2.2 Миграция точечных дефектов кристалл дефект аморфный тело Атомы, совершающие колебательное движение, непрерывно обмениваются энергией. Из-за хаотичности теплового движения энергия неравномерно распределена между разными атомами. В какой-то момент атом может получить от соседей такой избыток энергии, что он займет соседнее положение в решетке. Так осуществляется миграция (перемещение) точечных дефектов в объеме кристаллов. Перемещение атома на вакантное место в слое плотнейшей упаковки. Если один из атомов, окружающих вакансию, переместится в вакантный узел, то вакансия соответственно переместится на его место. Последовательные элементарные акты перемещения определенной вакансии осуществляются разными атомами. На рисунке показано, что в слое плотноупакованных шаров (атомов) для перемещения одного из шаров в вакантное место он должен раздвинуть шары 1 и 2. Следовательно, для перехода из положения в узле, где энергия атома минимальна, в соседний вакантный узел, где энергия также минимальна, атом должен пройти через состояние с повышенной потенциальной энергией, преодолеть энергетический барьер. Для этого и необходимо атому получить от соседей избыток энергии, который он теряет, «протискиваясь» в новое положение. Высота энергетического барьера Em называется энергией активации миграции вакансии. Изменение энергии атома при перемещении его в вакантный узел. 2.3 Источники и стоки точечных дефектов Основным источником и стоком точечных дефектов являются линейные и поверхностные дефекты - см. ниже. В крупных совершенных монокристаллах возможен распад пересыщенного твердого раствора собственных точечных дефектов с образованием т.н. микродефектов. 2.4 Комплексы точечных дефектов Простейший комплекс точечных дефектов - бивакансия (дивакансия): две вакансии, расположенные в соседних узлах решетки. Большую роль в металлах и полупроводниках играют комплексы, состоящие из двух и более примесных атомов, а также из примесных атомов и собственных точечных дефектов. В частности, такие комплексы могут существенно влиять на прочностные, электрические и оптические свойства твердых тел. 3. Дислокация Дислокация - линейный дефект кристаллической структуры твёрдых тел. Основная геометрическая характеристика дислокаций - вектор Бюргерса. Если в идеальном кристалле провести замкнутый контур, а затем попытаться провести такой же контур вокруг области с дислокацией, то контур будет разорван. Вектор, который нужно провести для замыкания этого контура, и есть вектор Бюргерса дислокации. Он характеризует величину и направление сдвига атомных плоскостей, приводящего к образованию дислокации. В зависимости от угла φ между вектором Бюргерса и линией дислокации различают дислокации винтовые (φ=0), краевые (φ=90°) и смешанные (произвольный угол φ). Смешанные дислокации могут быть разложены на краевую и винтовую компоненты. Образование краевой дислокации можно представить как результат удаления из кристалла одной кристаллической полуплоскости. Линия, отделяющая дефектную область кристалла от бездефектной, называется линией дислокации. Простейшая наглядная модель краевой дислокации - книга, у которой от одной из внутренних страниц оторвана часть. Тогда, если страницы книги уподобить атомным плоскостям, то край оторванной части страницы моделирует линию дислокации. Схематическое изображение краевой дислокации. Вектор Бюргерса обозначен чёрным цветом. Схематическое изображение винтовой дислокации. 4. Двумерные дефекты Основной дефект-представитель этого класса - поверхность кристалла. Другие случаи - границы зёрен материала, в том числе малоугловые границы (представляют собой ассоциации дислокаций), плоскости двойникование, поверхности раздела фаз и др. Граница наклона. 5. Трёхмерные дефекты Как правило, это поры или включения примесных фаз. Представляют собой конгломерат из многих дефектов. Происхождение - нарушение режимов роста кристалла, распад пересыщенного твердого раствора, загрязнение образцов. В некоторых случаях (например, при дисперсионном твердении) объемные дефекты специально вводят в материал, для модификации его физических свойств. 6. Методы избавления от дефектов Основной метод, который помогает избавляться от дефектов в кристалле - метод зонной плавки. Этот метод хорошо применим для кремния. Плавят малую часть кристалла, чтобы впоследствии перекристаллизовать расплав. Используют также просто отжиг. Дефекты при повышенной температуре обладают высоким коэффициентом диффузии. Вакансии могут выходить на поверхность, и поэтому говорят об испарении дефектов. 7. Полезные дефекты При пластической деформации металлов (например, ковке, прокатке), генерируются многочисленные дислокации, по-разному ориентированные в пространстве, что затрудняет разрушение кристалла по сетке дислокаций. Таким образом увеличивается прочность металла, но в то же время снижается пластичность. В искусственно выращенных рубинах, сапфирах для лазеров добавляют примеси (Cr, Fe, Ti) элементов - окрашивающие центры, которые участвуют в генерации когерентного света. 8. Поликристаллы Поликристалл - агрегат мелких кристаллов какого-либо вещества, иногда называемых из-за неправильной формы кристаллитами или кристаллическими зёрнами. Многие материалы естественного и искусственного происхождения (минералы, металлы, сплавы, керамики и т. д.) являются поликристаллами. Свойства поликристаллов обусловлены свойствами составляющих его кристаллических зёрен, их средним размером, который колеблется от 1-2 мкм до нескольких мм (в некоторых случаях до нескольких метров), кристаллографической ориентацией зёрен и строением межзёренных границ. Если зёрна ориентированы хаотически, а их размеры малы по сравнению с размером поликристалла, то в поликристалле не проявляется анизотропия физических свойств, характерная для монокристаллов. Если в поликристалле есть преимущественная кристаллографическая ориентация зёрен, то поликристалл является текстурированным и, в этом случае, обладает анизотропией свойств. Наличие границ зёрен существенно сказывается на физических, особенно механических, свойствах поликристаллов, так как на границах происходит рассеяние электронов проводимости, фононов, торможение дислокаций и др. Поликристаллы образуются при кристаллизации, полиморфных превращениях и в результате спекания кристаллических порошков. Поликристалл менее стабилен, чем монокристалл, поэтому при длительном отжиге поликристалла происходит рекристаллизация (преимущественный рост отдельных зёрен за счёт других), приводящая к образованию крупных кристаллических блоков. 9. Аморфные твердые тела Аморфные вещества (от др.-греч. ἀ «не-» и μορφή «вид, форма») не имеют кристаллической структуры и в отличие от кристаллов не расщепляются с образованием кристаллических граней, как правило - изотропны, то есть не обнаруживают различных свойств в разных направлениях, не имеют определённой точки плавления. К аморфным веществам принадлежат стекла (искусственные и вулканические), естественные и искусственные смолы, клеи и др. Стекло - твердотельное состояние аморфных веществ. Аморфные вещества могут находиться либо в стеклообразном состоянии (при низких температурах), либо в состоянии расплава (при высоких температурах). Аморфные вещества переходят в стеклообразное состояние при температурах ниже температуры стеклования T. При температурах свыше T, аморфные вещества ведут себя как расплавы, то есть находятся в расплавленном состоянии. Вязкость аморфных материалов - непрерывная функция температуры: чем выше температура, тем ниже вязкость аморфного вещества. Аморфные тела - твёрдые тела, находящиеся в аморфном состоянии (в отличие от кристаллического состояния), то же самое что стёкла. Аморфное тело не обладает дальним порядком в расположении атомов и молекул. Для аморфных тел характерна изотропия свойств и отсутствие определённой точки плавления: при повышении температуры аморфные тела постепенно размягчаются и выше температуры стеклования (Tg) переходят в жидкое состояние. Литература Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989. Курс общей физики, книга 3, И. В. Савельев: Астрель, 2001, ISBN 5-17-004585-9 Кристаллы / М. П. Шаскольская, 208 с ил. 20 см, 2-е изд., испр. М. Наука 1985 Границы зерен и свойства металлов. Кайбышев О. А., Валиев Р. З. М.:Металлургия, 1987. 214 с. Штремель М. А. Прочность сплавов. Ч. I. Дефекты решетки. М., 1982. В кн. «Теоретическое и прикладное материаловедение» |