Главная страница

Судопланов. Судоплатов С.В., Овчинникова Е.В. Дискретная математика 2016. Редакционная коллегия серии учебники нгту


Скачать 2.01 Mb.
НазваниеРедакционная коллегия серии учебники нгту
АнкорСудопланов
Дата05.06.2022
Размер2.01 Mb.
Формат файлаpdf
Имя файлаСудоплатов С.В., Овчинникова Е.В. Дискретная математика 2016.pdf
ТипУчебники
#571403
страница15 из 36
1   ...   11   12   13   14   15   16   17   18   ...   36
Целое число p > 1 тогда и только тогда являет-
ся простым, когда оно неразложимо. ¤
Следующая теорема называется основной теоремой арифметики.
Теорема 3.6.3 (единственность неприводимого разложения). Всякое це-
лое число a 6= 0, ±1 может быть записано как ± произведение простых
чисел единственным способом с точностью до порядка сомножителей.
Доказательство. Предположим, что положительное целое число a
имеет два неприводимых разложения: a = u
1
· . . . · u
r
= v
1
· . . . · v
s
, где
u
i
, v
j
— простые числа. Имеем u
1
| v
1
· . . . · v
s
и, так как u
1
просто, u
1
| v
j
1
для некоторого j
1
. Поскольку v
j
1
не имеет нетривиальных делителей, u
1
= v
j
1
Продолжая процесс, получаем, что u
2
делит произведение оставшихся со- множителей v
j
и, следовательно, u
2
= v
j
2
для некоторого j
2
и т. д. В конце концов получим, что r = s и после некоторого переупорядочивания u
i
= v
i
для всех i. ¤
Пример 3.6.2. Покажем, что существует коммутативное кольцо,
для которого не выполняется теорема о единственности неприводимого разложения. Рассмотрим множество всех положительных четных чисел
2Z
+
­ {2k | k ∈ Z и k > 0} с обычными операциями сложения и умножения:
h2Z
+
; +, ·i. В этой алгебре число 8 является разложимым, поскольку 8 = 2·4,
а число 14 — неразложимым, поскольку оно не является произведением двух или более чисел из 2Z
+
. Число 60 имеет два неприводимых разложения:
60 = 2 · 30 = 6 · 10. ¤
Из основной теоремы арифметики следует однозначность (с точностью до порядка сомножителей) разложения произвольного целого числа
a /
∈ {−1, 0, 1} в произведение степеней простых чисел:
a = ±p
e
1 1
p
e
2 2
· . . . · p
e
k
k
,
где p
i
различные простые числа, e
i
— натуральные числа.

3.6. РАЗЛОЖЕНИЕ ЦЕЛЫХ ЧИСЕЛ НА МНОЖИТЕЛИ
101
Имея такие разложения, легко находить НОД и НОК целых чисел: если
a = ±p
e
1 1
p
e
2 2
· . . . · p
e
k
k
и b = p
f
1 1
p
f
2 2
· . . . · p
f
k
k
, e
i
, f
i
> 0, то
НОД(a, b) = p
min{e
1
,f
1
}
1
p
min{e
2
,f
2
}
2
· . . . · p
min{e
k
,f
k
}
k
,
НОК(a, b) = p
max{e
1
,f
1
}
1
p
max{e
2
,f
2
}
2
· . . . · p
max{e
k
,f
k
}
k
.
Теорема 3.6.4. Множество простых чисел бесконечно.
Доказательство. Предположим противное.
Пусть существует лишь конечное число простых чисел p
1
, p
2
, . . . , p
m
. Рассмотрим число
n = p
1
·p
2
·. . .·p
m
+1, которое либо является простым, и тогда оно будет новым простым числом, либо имеет простой сомножитель p. Если p является одним из перечисленных простых чисел p
i
, то p делит произведение p
1
· p
2
· . . . · p
m
и, поскольку p делит n = p
1
· p
2
· . . . · p
m
+ 1, оно делит также и разность этих чисел, т. е. единицу, что невозможно. Следовательно, p является новым про- стым числом, т. е. имеет место противоречие с предположением конечности множества простых чисел. ¤
Опишем алгоритм нахождения всех простых чисел, не превосходящих заданного целого числа, с помощью решета Эратосфена. Запишем по по- рядку все целые числа от 2 до n. Затем вычеркнем все четные числа, кроме 2,
поскольку они делятся на 2 и потому не являются простыми. После этого вычеркнем все числа, кратные 3, и т. д. После i-го прохода будут вычеркну- ты все числа, которые делятся на первые i простых чисел p
1
, . . . , p
i
. Первое число x > p
i
, которое останется невычеркнутым, будет (i + 1)-м простым числом. Затем будут вычеркнуты все числа, кратные p
i
. Процесс вычерки- вания заканчивается при p
i
>

n, так как у любого составного числа 6 n
есть простой делитель 6

n.
Пример 3.6.3. Найдем все простые числа 6 60. В исходный список включим нечетные числа больше 2:
2 3
5 7
9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59.
Числа, кратные 3, > 3 2
, подчеркнуты одной чертой, кратные 5, > 5 2
, —
двумя, кратные 7, > 7 2
, — тремя. Для следующего простого числа 11 выпол- няется неравенство 11 2
> 60, поэтому все неподчеркнутые числа являются простыми 6 60. ¤

102
Глава 3. ЧИСЛОВЫЕ СИСТЕМЫ
Приведенный алгоритм достаточно трудоемок и может использоваться для нахождения сравнительно небольшого числа простых чисел. Более эф- фективные методы можно найти в специальной литературе, например в кни- ге А. Акритаса [1]. Из этой книги заимствован дальнейший материал насто- ящей главы.
§ 3.7.
Целые числа по модулю m
Рассмотрим кольцо целых чисел hZ; +, ·i. Зафиксируем целое число
m > 1 и зададим отношение эквивалентности
m
на множестве Z по следу- ющему правилу:
b ≡
m
a ⇔ b − a = m · q для некоторого q ∈ Z.
Класс эквивалентности элемента a — это множество {a + m · q | q ∈ Z} =
= {. . . , −3m + a, −2m + a, −m + a, a, m + a, 2m + a, 3m + a, . . .}, которое обо- значается через a + mZ или просто a.
Пример 3.7.1. Если
m = 5,
то
0 = {. . ., 10, 5, 0, 5, 10, . . .},
1 = {. . ., 9, 4, 1, 6, 11, . . .} и т. д. Таким образом, множество Z разби- вается на непересекающиеся подмножества 0, 1, 2, 3, 4, и фактор-множество есть Z/ ≡
5
= {0, 1, 2, 3, 4}. Заметим, что, хотя каждый класс эквивалентности содержит бесконечно много элементов, множество классов эквивалентности содержит всего пять элементов. ¤
В общем случае множество Z/ ≡
m
= {0, 1, . . . , m − 1} содержит m элемен- тов.
Вместо записи b ≡
m
a будем также использовать запись b ≡ a (mod m),
которая читается “b равно a по модулю m” или “b сравнимо с a по модулю m”.
Множество Z/ ≡
m
обозначается также через Z
m
и называется множеством
вычетов или множеством целых чисел по модулю m.
Доказательство следующего утверждения оставляется читателю в каче- стве упражнения.
Лемма 3.7.1. Отношение ≡
m
является конгруэнцией на алгебре
hZ; +, ·i. ¤
Из этой леммы следует, что на множестве Z
m
можно корректно опреде- лить операции сложения и умножения по правилам: a+b ­ a + b, a·b ­ a · b.

3.7. ЦЕЛЫЕ ЧИСЛА ПО МОДУЛЮ m
103
В получающейся таким образом алгебре hZ
m
; +, ·i выполняются все аксиомы коммутативного кольца с единицей. Например, нулевым элементом является класс 0, единицей — 1, противоположным по отношению к a элементом —
элемент −a ­ m − a. Кольцо hZ
m
; +, ·i называется кольцом вычетов по мо-
дулю m.
Арифметика целых чисел по модулю m может рассматриваться как ариф-
метика остатков или модулярная арифметика. Полная система остатков
по модулю m состоит из m целых чисел, по одному представителю из каж- дого класса эквивалентности. Чаще всего используются следующие две си- стемы: система неотрицательных остатков по модулю m, состоящая из чи- сел 0, 1, 2, . . . , m − 1, и система наименьших по абсолютной величине остат- ков, или симметричная система остатков, состоящая из чисел 0, ±1, ±2,
. . . , ±(m − 1)/2 для нечетного m. В дальнейшем мы будем часто отождеств- лять классы с соответствующими остатками, а арифметические операции +
и · выполнять по следующим правилам: суммой a + b остатков a и b назы- вается остаток от деления числа a + b на m, произведением a · b остатков a
и b называется остаток от деления числа a · b на m.
Теорема 3.7.2. Тогда и только тогда элемент a кольца Z
m
имеет
обратный (т. е. элемент a
1
такой, что a · a
1
= 1), когда (a, m) = 1.
Доказательство. По теореме 3.5.3 уравнение ax + my = 1 разрешимо тогда и только тогда, когда (a, m) = 1, а это равносильно существованию элемента x, для которого остаток от деления числа ax на m равняется еди- нице. Этот элемент x является представителем класса, который при умно- жении на класс, соответствующий остатку a, дает единицу, т. е. является обратным. ¤
Теорема 3.7.3. Кольцо вычетов hZ
m
; +, ·i тогда и только тогда явля-
ется полем, когда m — простое число.
Доказательство. По теореме 3.7.2 если m — простое число, то в Z
m
все ненулевые элементы обратимы, следовательно, hZ
m
; +, ·i является полем.
С другой стороны, если число m не является простым, то hZ
m
; +, ·i не поле.
Действительно, если m = a·b, 1 < a < m, 1 < b < m, то уравнение ax+my = 1
неразрешимо, поскольку (a, m) = a - 1. ¤
Пример 3.7.2. Кольцо Z
5
является полем. Все его ненулевые элемен- ты 1, 2, 3, 4 обратимы (обратные элементы — это 1, 3, 2 и 4 соответственно).
Кольцо Z
8
полем не является, поскольку не существует 2
1
. ¤

104
Глава 3. ЧИСЛОВЫЕ СИСТЕМЫ
По теореме 3.7.3 для любого простого числа p алгебра hZ
p
; +, ·i образу- ет конечное поле. В отличие от полей Q, R, C в этом поле сложением еди- ницы p раз получается нуль: 1 + 1 + . . . + 1 = 0. Наименьшее количество таких слагаемых называется характеристикой поля и обозначается через char. Поле, в котором сумма любого количества единиц не равна нулю, на- зывается полем характеристики нуль. Таким образом, char(Q) = char(R) =
= char(C) = 0, char(Z
p
) = p.
Опишем два алгоритма нахождения обратных элементов в поле hZ
m
; +, ·i.
1.
Использование алгоритма Евклида
Пусть a ∈ Z
m
— ненулевой элемент. Так как (a, m) = 1, по алгоритму
Евклида выполняются следующие соотношения:
m = aq
1
+ r
1
,
0 < r
1
< |a|,
a = r
1
q
1
+ r
2
,
0 < r
2
< r
1
,
r
1
= r
2
q
2
+ r
3
,
0 < r
3
< r
2
,
. . .
r
k−2
= r
k−1
q
q−1
+ r
k
,
0 < r
k
< r
k−1
,
r
k−1
= r
k
q
k
+ 1.
С помощью последней формулы выражаем число 1 через r
k
и r
k−1
:
1 = r
k−1
− r
k
q
k
. Затем с помощью полученного выражения и предпоследней формулы алгоритма Евклида выражаем число 1 через r
k−1
и r
k−2
:
1 = r
k−1
− r
k
q
k
= r
k−1
(r
k−2
− r
k−1
q
k−1
)q
k
=
= r
k−1
(1 + q
k−1
q
k
) + r
k−2
(−q
k
).
Продолжая процесс, на последнем шаге получим выражение числа 1 через a
и m: 1 = ax + my. Искомый класс a
1
есть класс, содержащий число x,
поскольку ax ≡ 1 (mod m).
Пример 3.7.3. Найдем число a
1
при a = 9, m = 23. По алгоритму
Евклида имеем 23 = 9 · 2 + 5, 9 = 5 · 1 + 4, 5 = 4 · 1 + 1. Тогда 1 = 5 · 1 4 · 1 =
= 5(95·1) = 5·29·1 = (239·2)·29·1 = (5)·9+23·2. Следовательно,
класс a
1
содержит число 5. При рассмотрении симметричной системы остатков это число берется в качестве числа 9
1
. Если же рассматривается неотрицательная система остатков, в качестве числа 9
1
нужно взять
5 + m = 5 + 23 = 18. Таким образом, 9
1
18 (mod 23). ¤

3.7. ЦЕЛЫЕ ЧИСЛА ПО МОДУЛЮ m
105 2.
Использование малой теоремы Ферма
Следующий способ нахождения обратного числа основан на малой тео- реме Ферма.
Теорема 3.7.4 (малая теорема Ферма). Если m — простое число
и a — произвольное целое число, не делящееся на m, то
a
m−1
1 (mod m). ¤
Из соотношения a · a
m−2
= a
m−1
1 (mod m) получаем
Следствие 3.7.5. Если m — простое число, то в кольце Z
m
выполня-
ется равенство a
1
= a
m−2
. ¤
Пример 3.7.4. Если a = 2, m = 5, то
2
1
2 52
(mod 5) 8 (mod 5) 3 (mod 5).
Тогда 2
1
= 3. ¤
Следующий метод, называемым бинарным, позволяет более эффективно использовать малую теорему Ферма, поскольку с его помощью ускоряется процесс возведения данного числа в степень. Этот метод работает следу- ющим образом. Предположим, требуется вычислить число a
k
. Запишем k
в двоичной системе счисления, опустив нули перед первой значащей циф- рой: k =
n−1
P
i=0
k
i
2
i
. Заменим каждую цифру 1 на пару букв SM
a
и каждую цифру 0 на букву S; после этого вычеркнем пару букв SM
a
слева. Получив- шаяся последовательность букв представляет собой правило для вычисле- ния a
k
, если интерпретировать S как “возвести в квадрат и взять остаток
по модулю m”, а M
a
как “умножить на a и взять остаток по модулю m”.
Пример 3.7.5. В Z
11
для нахождения 4
1
(mod 11) нужно вычислить 4 9
,
причем двоичное представление 9 равно 1001. Образуем последовательность
SM
4
SSSM
4
и, вычеркнув левые SM
4
, получим последовательность SSSM
4
,
которая означает “возвести в квадрат, возвести в квадрат, возвести в квадрат и умножить на 4”, выполняя все эти операции по модулю 11: 4 9
= ((4 2
)
2
)
2
· 4.
Проводя последовательно вычисления в Z
11
, получим 4 2
= 5, 4 4
= 5 2
= 3,
4 9
= (4 4
)
2
· 4 = (3 2
) · 4 = 9 · 4 = 3. Следовательно, 4
1
3 (mod 11), т. е.
4
1
= 3 в Z
11
. ¤

106
Глава 3. ЧИСЛОВЫЕ СИСТЕМЫ
§ 3.8.
Линейные уравнения по модулю m.
Китайская теорема об остатках
Теорема 3.8.1. Уравнение ax ≡ b (mod m) тогда и только тогда име-
ет решение, когда (a, m) | b. Если решение существует, то оно единственно
по модулю m/d, где d = (a, m), и уравнение имеет d решений по модулю m.
Доказательство. Целое число x удовлетворяет уравнению ax ≡ b
(mod m) тогда и только тогда, когда существует целое число y такое, что
ax + my = b. По теореме 3.5.3 уравнение ax + my = b разрешимо тогда и только тогда, когда (a, m) | b. Для доказательства второй части теоремы предположим, что x удовлетворяет условию ax ≡ b (mod m), и пусть z срав- нимо с x по модулю m/d. Тогда z = x + w(m/d) для некоторого w ∈ Z,
az = ax + aw(m/d) = ax + mw(a/d) ≡ ax ≡ b (mod m). Таким образом,
1   ...   11   12   13   14   15   16   17   18   ...   36


написать администратору сайта