Главная страница

Судопланов. Судоплатов С.В., Овчинникова Е.В. Дискретная математика 2016. Редакционная коллегия серии учебники нгту


Скачать 2.01 Mb.
НазваниеРедакционная коллегия серии учебники нгту
АнкорСудопланов
Дата05.06.2022
Размер2.01 Mb.
Формат файлаpdf
Имя файлаСудоплатов С.В., Овчинникова Е.В. Дискретная математика 2016.pdf
ТипУчебники
#571403
страница32 из 36
1   ...   28   29   30   31   32   33   34   35   36
f (x
1
, x
2
, x
3
,
x
4
, x
5
), показанную на рис. 6.16. Так как имеются только два различных столбца, то существует простая дизъюнктивная декомпозиция функции f
в форме f = F (g(x
1
, x
2
, x
3
), x
4
, x
5
). Для нахождения функции g(x
1
, x
2
, x
3
)

212
Глава 6. АЛГЕБРА ЛОГИКИ
1 1
1 1
1 1
1 1
0 0
1 1
1 1
1 1
0 0
0 0
1 1
1 1
1 0
0 0
1 1
0 0
x
4
x
2
x
5
x
3
x
3
x
1
Рис. 6.16
выберем строку карты, в ячейках которой содержатся как нули, так и едини- цы, например 4-ю строку (рис. 6.17). По выбранной строке составим функ- цию g с соответствующей таблицей истинности, показанной на рис. 6.18:
g = x
1
x
2
x
3
∨ x
1
x
2
x
3
∨ x
1
x
2
x
3
Приведя полученную формулу к минимальной ДНФ, получаем g =
= x
1
x
2
x
3
∨ x
1
x
2
. Теперь для нахождения функции F заметим, что по выбору строки карты декомпозиции имеем g = 0 для столбца (1 1 1 0)
T
и g = 1 для столбца (1 0 0 1)
T
. Таким образом, мы получаем карту Карно функции F
от переменных g, x
4
, x
5
в виде, изображенном на рис. 6.19. По карте Карно находим минимальную ДНФ функции F (g, x
4
, x
5
) = gx
5
∨ x
4
x
5
∨ gx
5
. ¤
Если все столбцы карты декомпозиции идентичны, то функция не за- висит от переменных множества A
1
и декомпозиция является тривиальной.
Если карта содержит два различных столбца, но комбинации цифр в них содержат либо все нули, либо все единицы, то функция не зависит от пере- менных множества A
2 1
0 0
0 1
1 0
0
x
2
x
3
x
3
x
1
Рис. 6.17

6.10. ФУНКЦИОНАЛЬНАЯ ДЕКОМПОЗИЦИЯ
213
x
1 0
0 0
0 1
1 1
1
x
2 0
0 1
1 0
0 1
1
x
3 0
1 0
1 0
1 0
1
g
1 0
0 0
1 1
0 0
1 1
1 0
1 1
0 0
x
4
x
5
g
Рис. 6.18
Рис. 6.19
3.
Сложные дизъюнктивные декомпозиции
Дизъюнктивная декомпозиция, не являющаяся простой, называется
сложной. Рассмотрим два вида сложных декомпозиций: итеративную и мно- жественную.
Итеративная функциональная декомпозиция представлена в следующей общей форме:
f (X) = F (g
m
(. . . g
3
(g
2
(g
1
(A
1
), A
2
), A
3
), . . . , A
m
)
(6.2)
и основана на повторении простой дизъюнктивной декомпозиции по пере- менным A
1
, A
2
, . . ., A
m
Множественная функциональная декомпозиция имеет вид
f (X) = F (g
1
(A
1
), g
2
(A
2
), . . . , g
m
(A
m
)).
(6.3)
Связь между сложными и простыми дизъюнктивными декомпозициями дается следующими теоремами.
Теорема 6.10.2. Для данной булевой функции f (X) тогда и только то-
гда существует итеративная дизъюнктивная декомпозиция вида (6.2), ко-
гда существует простая дизъюнктивная декомпозиция вида
f (X) = F
m
(g
0
m
(A
1
, A
2
, . . . , A
m−1
), A
m
),
простая дизъюнктивная декомпозиция функции g
0
m
g
0
m
= F
m−1
(g
0
m−1
(A
1
, A
2
, . . . , A
m−2
), A
m−1
),
простая дизъюнктивная декомпозиция функции g
0
m−1
и т. д. до m = 1. При
этом F = F
m
, g
m
= F
m−1
, g
m−1
= F
m−2
, . . . , g
2
= F
1
, g
1
= g
0
1
. ¤

214
Глава 6. АЛГЕБРА ЛОГИКИ
0 0
0 1
1 1
0 0
0 1
1 1
0 0
1 1
x
4
x
2
x
3
x
3
x
1 1
1 1
1 1
1 0
0
x
3
x
2
x
1
а
б
Рис. 6.20
Теорема 6.10.3. Для данной булевой функции f (X) тогда и только то-
гда существует множественная дизъюнктивная декомпозиция вида (6.3),
когда существуют простые дизъюнктивные декомпозиции вида
f (X) = F
1
(g
1
(A
1
), A
2
, A
3
, . . . , A
m
),
f (X) = F
2
(g
2
(A
2
), A
1
, A
3
, . . . , A
m
),
f (X) = F
m
(g
m
(A
m
), A
1
, A
2
, . . . , A
m−1
). ¤
Пример 6.10.5. Пусть f = x
1
x
2
x
3
x
4
∨x
1
x
2
x
3
x
4
∨x
3
x
4
∨ ∨ x
1
x
2
x
4
∨x
1
x
2
x
4
Из карты декомпозиции, показанной на рис. 6.20а, получим простую дизъюнктивную декомпозицию f = F (g
1
(x
1
, x
2
, x
3
), x
4
), где g
1
= x
3
∨ x
1
x
2

∨x
1
x
2
и F = g
1
x
4
∨ g
1
x
4 1
1 1
1 1
1
x
1
x
2
x
3
x
4
Рис. 6.21
Теперь рассмотрим функцию g
1
. Из карты,
приведенной на рис. 6.20б, получим простую дизъ- юнктивную декомпозицию g
1
= F
1
(g
2
(x
1
, x
2
), x
3
), где
g
2
= x
1
x
2
∨ x
1
x
2
и F
1
= g
2
∨ x
3
Эти две простые дизъюнктивные декомпозиции дают вместе итеративную дизъюнктивную декомпо- зицию f = F (F
1
(g
2
(x
1
, x
2
), x
3
), x
4
). ¤
Пример 6.10.6.
Пусть
f = x
1
x
2
x
3
∨ x
1
x
2
x
4

∨ x
1
x
2
x
3
∨ x
1
x
2
x
4
. Карта декомпозиции, показанная на рис. 6.21, имеет две различные строки и два различных столбца и, следовательно, дает следую- щие две декомпозиции функции f :
f = F
1
(g
1
(x
1
, x
2
), x
3
, x
4
),
где g
1
(x
1
, x
2
) = x
1
x
2
∨ x
1
x
2
, F
1
(g
1
, x
3
, x
4
) = g
1
x
3
∨ g
1
x
4
,
f = F
2
(g
2
(x
3
, x
4
), x
1
, x
2
),

6.11. ЛОГИЧЕСКИЕ СЕТИ
215
где g
2
= x
3
∨x
4
, F
2
= g
2
x
1
x
2
∨g
2
x
1
x
2
. В соответствии с теоремой 6.10.3 су- ществует множественная дизъюнктивная декомпозиция f = F (g
1
(x
1
, x
2
),
g
2
(x
3
, x
4
)).
Для нахождения функции F составим ее таблицу истинности, определя- емую всевозможными комбинациями значений g
1
и g
2
и соответствующими значениями функции f :
g
1
(x
1
, x
2
)
g
2
(x
3
, x
4
)
F
0 0
0 0
1 0
1 0
0 1
1 1
Из таблицы истинности находим, что F = g
1
· g
2
. ¤
§ 6.11.
Логические сети
1.
Определение и реализация булевых функций
Мультиграф G = hM, U, Ri, в котором выделено k вершин (полюсов), на- зывается k-полюсной сетью. Сеть G, задаваемая неориентированным муль- тиграфом с k полюсами, в которой каждое ребро помечено буквой из алфа- вита X = {x
1
, x
2
, . . . , x
n
, x
1
, x
2
, . . . , x
n
}, называется k-полюсной контактной
схемой.
На рис. 6.22 приведен пример контактной схемы с двумя полюса- ми a
1
и a
6






HH
HH
HH
©©
©©
©©
`````
`````
`````
Q
Q
Q
Q
Q
Q
Q
QQ
µ´
¶³
µ´
¶³
a
1
a
2
a
3
a
4
a
5
a
6
x
1
x
2
x
3
x
1
x
2
x
1
x
2
x
3
x
3
Рис. 6.22

216
Глава 6. АЛГЕБРА ЛОГИКИ
Если в (k + 1)-полюсной схеме S один полюс выделен (он называется
входным), а остальные полюса (выходные) равноправны, то S называется
(1, k)-полюсником. Таким образом, если в приведенной на рис. 6.22 двухпо- люсной схеме рассматривать, например, полюс a
1
как входной, а полюс a
6
как выходной, то получаем (1, 1)-полюсник .
Ребра контактной схемы называются контактами. Контакт, соответ- ствующий логической переменной x
i
, называется замыкающим и обозна- чается через

−c b−

. Замыкающий контакт пропускает ток при x
i
= 1. Кон- такт, соответствующий литере x
i
, называется размыкающим и обозначается как

−c b


. Через него ток проходит при x
i
= 0. Таким образом, значение 1
интерпретируется как состояние переключателя “ток проходит”, а 0 — “ток не проходит”. Функции x
i
∧ x
j
соответствует последовательное соединение
контактов

−c b−c b−

, а функции x
i
∨ x
j
параллельное соединение кон-
тактов
a−
c b


c b
−`
Нетрудно заметить, что схеме, показанной на рис. 6.22, соответствуют
электрическая схема, приведенная на рис. 6.23, а также схема контактов,
изображенная на рис. 6.24. На последнем рисунке показаны контакты, зави- сящие от значений переменных x
1
, x
2
, x
3
, а также схема соединений контак- тов.
Пусть a, b — полюса контактной схемы Σ, [a; b] — некоторая цепь из a
в b, K
[a;b]
— конъюнкция литер, приписанных ребрам цепи [a; b]. Функция
f
a,b
(X), определяемая формулой f
a,b
(X) =
W
[a;b]
K
[a;b]
, в которой дизъюнкция берется по всем простым цепям схемы, соединяющим полюса a и b, назы- вается функцией проводимости между полюсами a и b схемы Σ. Говорят,


x
1
x
2
x
1


x
1
x
2
x
2

x
3
-
x
3
x
3

Рис. 6.23

6.11. ЛОГИЧЕСКИЕ СЕТИ
217



³³
³³



³³
³³

a
1
a
6
x
1
x
2
x
3
Рис. 6.24
что функция g(X) реализуется (1, k)-полюсником, если существует такой выходной полюс b
i
, что f
a,b
i
(X) = g(X), где a — входной полюс. (1, 1)-
Полюсники называются эквивалентными, если они реализуют одну и ту же булеву функцию. Сложностью (1, 1)-полюсника называется число контак- тов. (1, 1)-полюсник, имеющий наименьшую сложность среди эквивалент- ных ему схем, называется минимальным. Сложность минимального (1, 1)- полюсника, реализующего функцию f , называется сложностью функции f
в классе (1, 1)-полюсников и обозначается через L
π
(f ).
Заметим, что задача нахождения минимального (1, 1)-полюсника среди эквивалентных данному (1, 1)-полюснику Σ равносильна нахождению сре- ди функций, реализуемых схемой Σ, функции, имеющей наименьшее чис- ло вхождений переменных. Действительно, функцию, реализуемую (1, 1)- полюсником, нетрудно представить в виде формулы, которая строится из ли- тер в соответствии с контактной схемой и имеет ровно столько вхожде- ний переменных, сколько контактов имеет схема. Например, изображенной на рис. 6.23 схеме соответствует булева функция
f (x
1
, x
2
, x
3
) = (x
1
∨ x
2
) · ((x
1
∨ x
2
) · x
3
∨ x
3
) ∨ x
1
x
2
x
3
.
(6.4)
Таким образом, задача нахождения минимального (1, 1)-полюсника сводится к минимизации соответствующей булевой функции.
Эффективное уменьшение числа контактов достигается с помощью на- хождения минимальной ДНФ булевой функции.

218
Глава 6. АЛГЕБРА ЛОГИКИ

x
1
x
2
x
1
x
2
x
3
x
3
x
3
-


x
1
x
2
x
1
x
2

x
3
x
3
-

а
б
Рис. 6.25
Найдем минимальную ДНФ функции (6.4), реализуемой схемой рис. 6.23.
Придавая логическим переменным x
1
, x
2
, x
3
всевозможные значения, по схе- ме или формуле (6.4) получаем таблицу истинности:
x
1 0
0 0
0 1
1 1
1
x
2 0
0 1
1 0
0 1
1
x
3 0
1 0
1 0
1 0
1
f
1 0
1 0
1 0
0 1
,
по которой определим совершенную ДНФ: x
1
x
2
x
3
∨ x
1
x
2
x
3
∨ x
1
x
2
x
3
∨ x
1
x
2
x
3
Используя один из методов нахождения минимальной ДНФ, получаем фор- мулу x
1
x
3
∨ x
2
x
3
∨ x
1
x
2
x
3
, эквивалентную формуле (6.4) и соответствующую схеме, состоящей из семи контактов (рис. 6.25а).
Отметим, что схема, изображенная на рис. 6.25а, допускает упрощение,
соответствующее формуле (x
1
∨ x
2
)x
3
∨ x
1
x
2
x
3
, которое приведено на рис.
6.25б и является минимальной схемой. Сложность минимальной схемы рав- на 6: L
π
(f ) = 6.
2.
Схемы из функциональных элементов
Ориентированная бесконтурная сеть, в которой полюса делятся на вход- ные (входы) и выходные (выходы), называется схемой из функциональных
элементов. Входные полюса помечаются символами переменных, а каждая вершина, отличная от входного полюса, — некоторым функциональным символом. При этом должны выполняться следующие условия:
если a — входной полюс, то полустепень захода вершины a равна нулю:
deg

(a) = 0;
если вершина a не является полюсом и помечена n-местным функцио- нальным символом f , то deg

(a) = n и дуги, входящие в a, перенумерованы от 1 до n.
Функциональным элементом называется всякий подмультиграф схемы,
состоящий из невходного полюса a, помеченного соответствующим симво- лом f , и вершины, из которых исходят дуги в вершину a.

6.11. ЛОГИЧЕСКИЕ СЕТИ
219
Пример 6.11.1. На рис. 6.26а представлена схема из функциональ- ных элементов. Здесь входные символы помечены символами перемен- ных x
1
, x
2
, x
3
; ¬ — одноместный функциональный символ, соответствующий операции отрицания; & — двухместный символ, соответствующий операции конъюнкции; f
3
— некоторый двухместный символ; f
1
, f
2
, f
4
— некоторые трехместные символы. Вершины, помеченные символами
1   ...   28   29   30   31   32   33   34   35   36


написать администратору сайта