Главная страница

Цифровая подпись. Реферат Цифровая подпись


Скачать 294.5 Kb.
НазваниеРеферат Цифровая подпись
АнкорЦифровая подпись
Дата23.12.2019
Размер294.5 Kb.
Формат файлаdoc
Имя файлаЦифровая подпись.doc
ТипРеферат
#101896
страница4 из 6
1   2   3   4   5   6
Es(X0)=C0,
Es(X1)=C1.

Таким образом, предложенная Диффи и Хеллманом схема цифровой подписи на основе классического блочного шифра обладает такой же стойкостью, что и лежащий в ее основе блочный шифр, и при этом весьма проста. Однако, у нее есть два существенных недостатка.

Первый недостаток заключается в том, что данная схема позволяет подписать лишь один бит информации. В блоке большего размера придется отдельно подписывать каждый бит, поэтому даже с учетом хэширования сообщения все компоненты подписи – секретный ключ, проверочная комбинация и собственно подпись получаются довольно большими по размеру и более чем на два порядка превосходят размер подписываемого блока. Предположим, что в схеме используется криптографический алгоритм EK с размером блока и ключа, соответственно n и nK. Предположим также, что используется функция хэширования с размером выходного блока nH. Тогда размеры основных рабочих блоков будут следующими:

размер ключа подписи: nkS=2nH×nK.

размер ключа проверки подписи: nС=2nHn.

размер подписи: nS =nH×nK.

Если, например, в качестве основы в данной схеме будет использован шифр ГОСТ 28147–89 с размером блока n=64 бита и размером ключа nK=256 бит, и для выработки хэш–блоков будет использован тот же самый шифр в режиме выработки имитовставки, что даст размер хэш–блока nH=64 то размеры рабочих блоков будут следующими:

размер ключа подписи: nkS=2nH×nK =2×64×256бит=4096 байт;

размер ключа проверки подписи: nС=2nHn = 2×64×64 бит = 1024 байта.

размер подписи: nS =nH×nK = 64×256 бит = 2048 байт.

Второй недостаток данной схемы, быть может, менее заметен, но столь же серьезен. Дело в том, что пара ключей выработки подписи и проверки подписи могут быть использованы только один раз. Действительно, выполнение процедуры подписи бита сообщения приводит к раскрытию половины секретного ключа, после чего он уже не является полностью секретным и не может быть использован повторно. Поэтому для каждого подписываемого сообщения необходим свой комплект ключей подписи и проверки. Это практически исключает возможность использования рассмотренной схемы Диффи–Хеллмана в первоначально предложенном варианте в реальных системах ЭЦП.

Однако, несколько лет назад Березин и Дорошкевич предложили модификацию схемы Диффи–Хеллмана, фактически устраняющую ее недостатки.

Центральным в этом подходе является алгоритм «односторонней криптографической прокрутки», который в некотором роде может служить аналогом операции возведения в степень. Как обычно, предположим, что в нашем распоряжении имеется криптографический алгоритм EK с размером блока данных и ключа соответственно n и nK бит, причем n£nK.

Пусть в нашем распоряжении также имеется некоторая функция отображения n–битовых блоков данных в nK–битовые Y=Pn®nK(X), |X|=n, |Y|=nK. Определим рекурсивную функцию Rk «односторонней прокрутки» блока данных T размером n бит k раз (k ³ 0) при помощи следующей формулы:

где X – произвольный несекретный n-битовый блок данных, являющийся параметром процедуры прокрутки.

По своей идее функция односторонней прокрутки чрезвычайно проста, надо всего лишь нужное количество раз (k) выполнить следующие действия: расширить n-битовый блок данных T до размера ключа использованного алгоритма шифрования (nK), на полученном расширенном блоке как на ключе зашифровать блок данных X, результат зашифрования занести на место исходного блока данных (T). По определению операция Rk(T) обладает двумя важными для нас свойствами:


  1. Аддитивность и коммутативность по числу прокручиваний:

Rk+k'(T)=Rk'(Rk(T)) = Rk(Rk'(T)).

  1. Односторонность или необратимость прокрутки: если известно только некоторое значение функции Rk(T), то вычислительно невозможно найти значение Rk'(T) для любого k'<kесли бы это было возможно, в нашем распоряжении был бы способ определить ключ шифрования по известному входному и выходному блоку алгоритма EK. что противоречит предположению о стойкости шифра.

Теперь покажем, как указанную операцию можно использовать для подписи блока T, состоящего из nT битов.

Секретный ключ подписи kS выбирается как произвольная пара блоков k0, k1, имеющих размер блока данных используемого блочного шифра, т.е. размер ключа выработки подписи равен удвоенному размеру блока данных использованного блочного шифра: |kS|=2n;

Ключ проверки подписи вычисляется как пара блоков, имеющих размер блоков данных использованного алгоритма по следующим формулам:

kC=(C0,C1) = (R2nT–1(K0), R2nT–1(K1)).

В этих вычислениях также используются несекретные блоки данных X0 и X1, являющиеся параметрами функции «односторонней прокрутки», они обязательно должны быть различными. Таким образом, размер ключа проверки подписи также равен удвоенному размеру блока данных использованного блочного шифра: |kC|=2n.

Вычисление и проверка ЭЦП будут выглядеть следующим образом:

Алгоритм SignT выработки цифровой подписи для nT-битового блока T заключается в выполнении «односторонней прокрутки» обеих половин ключа подписи T и 2nT–1–T раз соответственно:

s=SignT(T)=(s0,s1)=.

Алгоритм VernT проверки подписи состоит в проверке истинности соотношений , которые, очевидно, должны выполняться для подлинного блока данных
1   2   3   4   5   6


написать администратору сайта