Главная страница
Навигация по странице:

  • «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н. П. ОГАРЁВА»

  • РЕФЕРАТ « Противоопухолевый иммунитет» по дисциплине иммунология.

  • Понятие о противоопухолевом иммунитете

  • Неспецифическая стимуляция иммунного ответа

  • CD8-положительные Т-лимфоциты

  • CD4-положительные Т-хелперы 1 типа

  • Трансплантация опухолевых клеток

  • Т-антигены имеют вирусное происхождение

  • Заводов302А Противоопухолевый иммунитет. Реферат Противоопухолевый иммунитет


    Скачать 48.35 Kb.
    НазваниеРеферат Противоопухолевый иммунитет
    Дата27.12.2018
    Размер48.35 Kb.
    Формат файлаdocx
    Имя файлаЗаводов302А Противоопухолевый иммунитет.docx
    ТипРеферат
    #62012

    Федеральное государственное бюджетное образовательное

    учреждение высшего образования

    «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОРДОВСКИЙ

    ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н. П. ОГАРЁВА»
    Факультет биотехнологии и биологии

    Кафедра биотехнологии, биоинженерии и биохимии


    РЕФЕРАТ

    «Противоопухолевый иммунитет»

    по дисциплине иммунология.

    Автор работы:

    Студент 302 группы

    Направления «Биоинженерия и биоинформатика» П.А. Заводов

    Проверил:

    Кандидат медицинских наук, доцент Э.С. Ревина


    Саранск

    2018

    СОДЕРЖАНИЕ

    1. Введение

    2. Понятие о противоопухолевом иммунитете

    3. Иммунодиагностика и иммунотерапия

    4. Неспецифическая стимуляция иммунного ответа

    5. Трансплантация опухолевых клеток

    6. Заключение

    7. Список литературы

     

    ВВЕДЕНИЕ

    Опухоли являются носителями особых антигенов, поэтому иммунный ответ организма на опухоль представляется вполне закономерным явлением. Совокупность клеточных и гуморальных реакций иммунного ответа организма на антигены опухоли и составляет противоопухолевой иммунитет. Морфологический анализ проявлений иммунного ответа требует знакомства с современными иммунологическими представлениями о противоопухолевой резистентности организма и о системе иммунологического надзора, частным проявлением которого, по-видимому, является противоопухолевая резистентность.

     

    Понятие о противоопухолевом иммунитете

    Злокачественные опухоли являются носителями чужеродной генетической информации и, следовательно, объектом защитной реакции со стороны иммунной системы организма-хозяина. Ею уничтожаются любые клетки, несущие чужеродную генетическую информацию. Злокачественно трансформированные клетки содержат продукты собственных измененных (мутировавших) или чужеродных (вирусных) генов. Защитное действие иммунной системы заключается в предотвращении потенциальной опасности развития огромного числа опухолей. Лишь немногие клетки, способные маскировать проявления своей чужеродности и обходящие иммунологический контроль, дают начало злокачественным новообразованиям.

    Специфические для опухолей антигены уникальны для раковых клеток и не встречаются на нормальных клетках. Они являются результатом мутаций, возникающих в опухолевых клетках. Цитозольный процессинг мутантных белков дает пептиды, которые презентируются молекулами гистосовместимости I класса и индуцируют клеточный ответ на опухоли.

    Злокачественную трансформацию клеток могут вызывать некоторые вирусы (вирус саркомы Рауса, ретровирусы, вирус папиломы и другие). В таком случае опухолевые клетки несут вирусные белки, которые являются для организма чужеродными и способны распознаваться иммунной системой за счет процессинга и презентации молекулами гистосовместимости I класса.

    Различают также антигены, ассоциированные с опухолями. Они не уникальны для раковых клеток и нередко являются белками, присутствующими также в эмбриональных клетках. У взрослых их в норме нет или очень мало. В опухолевых клетках эти белки могут появляться за счет реактивации эмбриональных генов. Примером является альфа-фетопротеин, являющийся эмбриональным аналогом альбумина — основного белка плазмы крови.

    Главную роль в противоопухолевом иммунитете играет клеточный иммунный ответ.

    Иммунодиагностика

    Несмотря на то что для опухолевых клеток известно лишь небольшое число присущих только им маркеров, для диагностики могут быть весьма полезны антитела к опухолеассоциированным антигенам, поскольку они позволяют выявить повышенное количество того или иного антигена или присутствие какого-либо антигена в необычном участке. Поэтому используемые для диагностики антигены необязательно должны быть опу-холеспецифическими.

    In vivo Для выявления опухолей in vivo используют радиоактивно меченные антитела к опухолеассоциированным антигенам, однако этот метод часто менее чувствительней, чем современные методы компьютерной томографии или ядерного магнитного резонанса. Кроме того, иммуносцинтиграфия имеет те недостатки, что используемые антитела необходимо заново метить при исследовании каждого больного и для определения различных типов опухолей оптимальны различные антитела. Чувствительность иммуносцинтиграфии в будущем может быть повышена за счет получения рекомбинантных фрагментов высокоаффинных антител.

    In vitro С помощью антител можно определять клеточное происхождение недифференцированных опухолей и выявлять микрометастазы в костном мозге, спинномозговой жидкости, лимфоидных органах и т.д. Разработаны также методы иммунологического анализа для выявления нескольких опухолеассоции-рованных антигенов в сыворотке крови. К таким антигенам относятся, например, раково-эмбрио-нальный антиген и б-фетопротеин. Повышенный уровень указанных антигенов может быть полезным диагностическим признаком, однако АФП и РЭА не ассоциированы только с каким-либо одним типом опухолей и поэтому их определение важно главным образом для контроля эффективности лечения.

    Иммунотерапия

    В настоящее время значение иммунотерапии не велико.

    Иммунотерапия имеет долгую историю, однако лишь в редких случаях этот метод применим как основной. Иммунолечение может быть активным или пассивным, специфическим или неспецифическим и даже комбинированным.

    Активная иммунотерапия остается пока большей частью на стадии экспериментальной разработки.

    Специфическая активная иммунизация В экспериментах на животных оказался до некоторой степени успешным подход, основанный на применении инактивированных опухолевых клеток для иммунизации до прививки опухоли. Намного менее удачными оказались попытки вызвать регрессию развившихся опухолей. Большие усилия были направлены на то, чтобы найти способ повышения иммуногенности опухолевых клеток, однако пока это не дало практического выхода. Новые данные - о презентации Т-клеточных эпитопов молекулами МНС и о зависимости иммунного ответа на стадии индукции от костимулирующих факторов - позволили начать разработку более рациональных подходов.

    Так, в опытах на животных установлено, что трансфекция генов В7 или цитокинов, например ИЛ-2, ИЛ-4, ИФуили ГМ-КСФ, в опухолевые клетки существенно увеличивает иммуногенность этих клеток. Кроме того, путем иммунизации определенными пептидными эпитопами с применением новых адъювантов удалось индуцировать образование цитотоксических Т-лимфоцитов, способных вызывать отторжение экспериментальных опухолей. Для непосредственной иммунизации животных могут быть также использованы полученные методом генетической инженерии фрагменты ДНК, кодирующие опухолевые антигены и костимуляторные молекулы; это позволяет устранить генетические ограничения, мешающие при использовании самих опухолевых клеток для иммунизации. У животных все указанные методы могут обеспечивать защиту при последующей пересадке опухоли, но значительно менее эффективны при лечении развившихся опухолей. Таким образом, лишь немногие данные указывают на то, что специфическая активная иммунизация применима для противоопухолевой терапии у человека.

    Неспецифическая стимуляция иммунного ответа

    Для этой цели используют различные агенты. У человека большинство попыток системной терапии не дает успеха, однако локальное применение противотуберкулезной вакцины - БЦЖ - может быть эффективным: введение БЦЖ в очаг поражения способно вызвать регрессию меланомы. И, кроме того, неспецифическая локальная иммунизация БЦЖ эффективна при опухолях мочевого пузыря.

    Иммунизация против онкогенных вирусов Поскольку все больше данных указывает на роль вирусов в развитии некоторых онкологических заболеваний у человека, наиболее перспективным направлением иммунизации может быть предотвращение инфекций, вызываемых потенциально онкогенными возбудителями. Массовая иммунизация против гепатита В несомненно уменьшит частоту возникновения первичного рака печени. Возможна вакцинация людей определенной группы риска против вирусов папилломы, вируса Т-клеточного лейкоза человека и вируса Эп-штейна-Барр.

    Пассивная иммунотерапия моноклональными антителами имеет некоторые перспективы, но с ограничениями.

    На раннем этапе исследований был сделан ряд попыток применить пассивную иммунотерапию поликлональной антисывороткой, но они остались без продолжения из-за трудности получения специфичных антител в высоких титрах. Возможно, эти проблемы поможет решить гибриломная технология получения моноклональных антител. Хотя специфические опухолевые антигены пока не обнаружены, все же выявлена повышенная экспрессия определенных антигенов на клетках некоторых опухолей, что открывает путь для терапии с помощью мАт, поскольку повреждение нормальных клеток организма, несущих те же антигены, может быть при этом незначительным или отсутствовать. Моноклональные антитела могут использоваться как в виде чистых препаратов, так и в конъюгированной форме - с лекарственными средствами, пролекарствами, токсинами, цитокинами или изотопами. Однако имеется целый ряд ограничений для применения антител с терапевтической целью.

    • Как правило, антитела слабо проникают в массивные опухоли. Теоретически это возможно преодолеть, применяя молекулы меньших размеров, но сохраняющие способность специфического связывания антигена, например Fab'-фрагменты, или специально сконструированные однодоменные антитела. Другой подход состоит в том, чтобы направлять терапевтическое воздействие на эндотелий кровеносных сосудов, снабжающих опухоль.

    Антитела связываются другими клетками, в том числе нормальными клетками, экспрессирующими антиген-мишень. Возможно и неспецифическое связывание антител клетками, имеющими Fc-рецепторы или рецепторы для углеводных компонентов иммуноглобулинов. Частично эти проблемы можно решить путем химической модификации антител или их изменения методом генетической инженерии. Предотвратить связывание антител нормальными клетками можно было бы и путем применения биспецифичных антител, т.е. направленных сразу к двум различным антигенам, одновременно экспрессируемым на опухолевых клетках, при том что только один из них присутствует на нормальных клетках.

    • Антитела обладают иммуногенностью и могут быть "атакованы" иммунной системой. Поэтому химерные, или гибридные, антитела, т.е. содержащие участки иммуноглобулинов человека, способны индуцировать антиидиотипический иммунный ответ. Эту проблему возможно устранить путем проведения последовательных курсов лечения различными мАт.

    Несмотря на перечисленные трудности, уже получены некоторые обнадеживающие результаты. В исследовании, проведенном по методу случайной выборки, мАт были использованы для лечения рака толстой кишки после хирургического удаления первичной опухоли. Мишенью терапии были микрометастазы, что исключало проблемы, связанные со слабым проникновением мАт в массу опухоли. Такое лечение существенно продлевало жизнь больных. Определенные перспективы обнаруживает и применение радиоактивно меченных антител к В-клеткам в случае лимфом, устойчивых к традиционным методам лечения.

    Антитела могут быть также использованы in vitro - либо для очистки костного мозга от опухолевых клеток с его последующей аутотрансплантацией, либо для удаления Т-клеток с целью предотвращения реакции "трансплантат против хозяина" при аллотрансплантации.

    В последние годы сконструированы библиотеки генов вариабельной области Ig человека, встроенных в рекомбинантные бактериофаги нитевидной формы, которые экспонируют Ig на своей поверхности. Благодаря этому можно отбирать высокоаффинные антитела к любому данному антигену и уже получены антитела ко многим антигенам клеточной поверхности, так что описанная технология, вполне вероятно, обеспечит получение терапевтически эффективных антител второго поколения, направленных к опухолеассоциированным молекулам.

    Результаты пассивной иммунотерапии с помощью лимфоцитов неоднозначны

    Культивируемые in vitro мононуклеарные клетки периферической крови человека в присутствии ИЛ-2 приобретают высокую цитотоксическую активность к широкому спектру опухолевых мишеней, большая часть которых устойчива к свежевыделенным НК-клеткам. Начальные эксперименты на животных и человеке, в которых такие лимфокинактивированные киллерные клетки реинфузировали больным, дали хорошие результаты, особенно при одновременном введении ИЛ-2. Однако в клинических испытаниях результаты менее обнадеживающие, причем применение в высоких дозах ИЛ-2 вызывает существенный токсический эффект. По-видимому, лишь небольшое количество ЛАК локализуется в опухолях, и это может служить одной из причин слабого эффекта подобного лечения. Для повышения его эффективности применяют биспецифичные моноклональные антитела. Один антигенсвязывающий участок таких антител специфичен к опухолевой молекуле, а другой - к поверхностным маркерам эффекторных клеток, например CD3 на Тц-клетках или CD16 на НК-клетках. Теоретически данные антитела должны способствовать локализации ЛАК на поверхности опухоли. Описанные подходы дают эффект in vitro, однако in vivo их эффективность менее очевидна.

    Для реинфузии используют также культуры Т-клеток, экстрагированных из участков опухолей и выращиваемых в присутствии ИЛ-2. В некоторых случаях такие культивируемые Т-клетки обнаруживают относительную специфичность к опухоли, из которой они были выделены. В экспериментах на животных четко установлено, что опухолеспецифичные цйтотоксические Т-клетки способны вызывать быструю регрессию опухоли. Токсичность инфильтрирующих опухоль лимфоцитов может быть повышена путем трансфекции в них генов, кодирующих тот или иной цитокин. Однако реальную эффективность подобных стратегий в применении к человеку еще только предстоит выяснять. В то же время с терапевтической целью уже применяют ВЭБ-специфичные Тц-клетки, культивируемые в присутствии ИЛ-2; их вводят больным, у которых образовались лимфомы после трансплантации костного мозга. В результате такой терапии происходит ремиссия опухолей. Мишенями при этом служат сильные антигены ВЭБ. Предполагается исследовать эффективность такого подхода в отношении распространенных эпителиальных злокачественных новообразований.

    Регрессию опухолей может вызывать пассивная иммунотерапия с применением цитокинов.

    Для терапии опухолей используются многие цитокины, препараты которых получены на основе клонированных генов. Успехи в этой области пока ограниченные, тем не менее установлено, что ЙєЦг способен обеспечивать длительную ремиссию волосатоклеточного лейкоза, а ИЛ-2 эффективен при некоторых типах меланом и раке почки. Имеются также перспективные результаты терапии перитонеальных опухолей яичников с помощью ЗЦг и ФНОос. Возможно, однако, что цитокины пока используются несоответствующим образом. Обычно их применяют по аналогии с питотоксическими препаратами, т.е. в предельно допустимых дозах. Вместе с тем последние данные по лечению злокачественных опухолей головы и шеи позволяют предполагать, что не менее, если не более эффективными могут быть меньшие дозы, в которых цитокины будут давать значительно меньше побочных эффектов.

    Некоторые цитокины обнаруживают полезные эффекты для поддерживающей терапии. Например, колониестимулирующие факторы способны уменьшать период аплазии после трансплантации костного мозга или цитотоксической терапии, а эритропоэтин ослабляет анемию.

    CD8-положительные Т-лимфоциты. Цитотоксические CD8-положительные Т-лимфоциты выполняют прямую киллерную функцию. С помощью Т-клеточного рецептора они распознают на поверхности опухолевых клеток связанные с молекулами гистосовместимости I класса пептидные фрагменты белков, характерных для трансформированных клеток. Специфическое распознавание приводит к реализации цитотоксической функции CD8-положительных Т-клеток и уничтожению опухолевых клеток путем апоптоза.

    CD4-положительные Т-хелперы 1 типа. Т-хелперы 1 типа выполняют регуляторные функции, помогая успешной реализации киллерной роли CD8-положительных Т-лимфоцитов. Они также привлекают и активируют тканевые макрофаги, дендритные клетки и моноцитарные клетки. Выработка CD4-положительными Т-клетками 1 типа цитокинов, и в первую очередь интерферона-гамма, приводит к миграции в зону локализации опухоли макрофагальных клеток, их активации и поглощению фрагментов опухолевых клеток, гибнущих путем апоптоза. Показано, что Т-хелперы 1 типа также могут выполнять цитотоксическую функцию.

    Макрофаги. Макрофаги обладают фагоцитарной функцией и, кроме того, могут выполнять киллерную функцию, осуществляемую за счет локальной секреции цитотоксических продуктов, приводящих к гибели опухолевой клетки.

    Цитотоксичность макрофагов связана также с описанным выше феноменом антителозависимой клеточной цитотоксичности. Антитела способны связываться с Fc-рецепторами на поверхности макрофагов и одновременно специфически взаимодействовать с опухолевыми мембранными антигенами. Образование мостиков между макрофагами и опухолевыми клетками-мишенями может приводить к атаке макрофага на клетку-мишень, в результате которой последняя погибает.

    Натуральные киллеры. Натуральные киллеры мигрируют в зону локализации опухолевых клеток под воздействием продуцируемых CD4-положительными Т-клетками 1 типа цитокинов (интерферон-гамма). Интерферон обеспечивает направленную миграцию натуральных киллеров (NK-клеток). Они не обладают антигенной специфичностью, не требуют антигензависимой дифференцировки. Обнаружив злокачественную клетку, способны сразу оказать цитотоксическое действие. Как и цитотоксический Т-лимфоцит, один натуральный киллер может уничтожить множество опухолевых клеток.

    Многие опухолевые клетки имеют на мембране пониженную плотность молекул HLA I класса, что рассматривается как один из путей ухода опухолевых клеток от иммунологического надзора. Ингибирующие рецепторы натуральных киллеров (KIR) в таком случае не находят достаточного количества своих лигандов — молекул HLA I класса на мембране опухолевых клеток. Ингибирующий сигнал с KIR-рецепторов оказывается недостаточным, и NK-клетки осуществляют цитотоксическую атаку, убивая опухолевую клетку.

    Кроме того, NK-клетки, несущие на своей поверхности один из Fc-рецепторов IgG (CD 16 антиген), способны проявлять антителозависимую клеточную цитотоксичность. Антитела против опухолевых антигенов, связанные Fc-участком через CD 16 антиген с NK-клеткой, служат мостиком между опухолевой клеткой и натуральным киллером. Формирование таких мостиков может приводить к цитотоксическому воздействию NK-клеток на опухоль.

    Гуморальное звено иммунитета также участвует в реализации противоопухолевого иммунитета.

    Интерфероны. Восстанавливают экспрессию молекул гистосовместимости I класса на мембране опухолевых клеток. Тем самым увеличивается противоопухолевая активность цитотоксических Т-лимфоцитов. Интерферон-гамма участвует в привлечении и активации цитотоксических Т-лимфоцитов, макрофагов и NK-клеток, играющих главную роль в иммунном ответе на опухоль.

    Классический путь активации комплемента. Если с опухолевым антигеном, появившимся на клеточной мембране, специфически взаимодействуют антитела класса IgM, то может инициироваться классический путь активации комплемента. Результатом активации является комплементзависимый цитолиз. Для активации системы комплемента в этом случае достаточно одной молекулы IgM.

    Антитела. Играют неоднозначную роль в противоопухолевом иммунитете. С одной стороны, они, как описано выше, вызывают гибель опухолевых клеток, активируя систему комплемента или реализуя антителозависимую клеточную цитотоксичность. С другой стороны, антитела могут вызывать защитный эффект по отношению к опухоли.

    Нередко антитела класса IgG являются не только защитными по отношению к опухолям, но и могут усиливать их рост. Такой эффект связывают с блокадой антителами опухолевых антигенов на мембране опухолевой клетки и с исчезновением антигенов с поверхности клетки за счет эндоцитоза.

    Защитные эффекты антител относят к способам, с помощью которых опухоль уходит из-под надзора иммунной системы. К другим способам ухода опухоли из-под иммунологического надзора относят понижение плотности экспрессии на мембране молекул гистосовместимости I класса, отсутствие способности опухолевых клеток активировать наивные Т-лимфоциты, выработку белков, подавляющих противоопухолевый иммунный ответ.

    Трансплантация опухолевых клеток

    В течение долгого времени — до начала XX века все попытки трансплантации опухолевых клеток были неудачными. Пересаженные опухоли некоторое время росли, а затем неизменно отторгались. История современной иммунологии началась с открытия того факта, что опухоли, возникшие в колониях инбредных животных и трансплантированные инб-редным животным той же группы, могут расти в организме нового хозяина, а при попытках трансплантации животным посторонних инбредных групп — отторгаются. Это открытие положило начало эре генетики трансплантационных антигенов и получения генетически чистых линий экспериментальных животных.

    С получением таких линий оказалось возможным в течение неограниченного времени пересаживать опухолевые клетки от одного животного другому и получать при этом воспроизводимые результаты. Таким образом, первые попытки вызвать противоопухолевый иммунный ответ привели к пониманию того, что в корректной экспериментальной системе исследования противоопухолевого иммунитета трансплантационные антигены на клетках опухоли и реципиента должны совпадать. Несоблюдение этого правила приведет к иммунному ответу преимущественно на трансплантационные антигены, а не на антигены опухоли. Впервые существование противоопухолевого иммунитета было продемонстрировано Гроссом в 1943 г., когда он показал, что саркомы, индуцированные метилхолантреном у мышей СЗН, можно трансплантировать мышам той же линии внутрикожно, а затем удалять хирургически либо простым наложением лигатуры и прекращением кровоснабжения опухоли.

    У животных, подвергнутых такой процедуре, вторичная трансплантация той же опу холи приводит к ее отторжению. Полное же и убедительное доказательство существования опухолеспецифического отторжения трансплантированных раков было получено в 1957 г. в экспериментах Р.Т. Прена и Д.М. Мэйна, которые наиболее полно показали, что антигены, вызывающие отторжение опухолей, являются опухолеспецифическими и не присутствуют в нормальных тканях. Они показали также, что иммунизация опухолевыми клетками не вызывает отторжения трансплантатов кожи и других нормальных тканей. Следующее важное доказательство было получено в 1960 г. Георгом Клейном с соавт., который показал, что опухолеспецифическая резистентность к опухолям, индуцированным метилхолантреном, имеется непосредственно у так называемого аутохтонного хозяина — т. е. у животного, у которого эта опухоль была индуцирована.

    В последующие годы было показано, что индукция опухолеспецифической трансплантационной резистентности может быть вызвана опухолями, индуцированными другими химическими или физическими (такими, как ультрафиолетовые лучи) канцерогенами, а также спонтанно возникшими опухолями.

    Отторжение опухолевых клеток либо его альтернатива — рост опухоли в этой системе, по-видимому, подчиняются закону «все или ничего». За исключением высокоиммуногенных опухолей, как правило, существует пороговая доза опухолевых клеток, превышение которой приводит к опухолевому росту, остановить который иммунная система не в состоянии.

    Иммуногенность опухолей в значительной мере зависит от способа их индукции, который, возможно, тесно связан с иммуносупрессивным действием канцерогенного фактора. Хорошо известно, что наименее иммуногенными опухолями являются спонтанные. Далее, в порядке усиления иммуногенности, могут быть названы опухоли, индуцированные метилхолантреном. который вызывает кратковременное состояние иммуносупрессии, и опухоли, индуцированные УФ-излучением — наиболее иммуногенные в этом ряду. Особенностью последних является то, что пересадка таких опухолей обычно возможна только при использовании реципиентов с нарушенным клеточным иммунитетом — например, мышей nude, лишенных тимуса и Т-клеток, тогда как у нормальных реципиентов такие опухоли не растут Особенностью экспериментальной системы, использующей УФ-излучения в качестве канцерогенного фактора, является стойкая и длительная системная супрессия иммунного ответа, связанная с подавлением ко-стимуляторной функции дендритных клеток кожи — клеток Лангерганса. На фоне подавления клеточного иммунитета вполне вероятно возникновение иммуногенных вариантов опухолей, подавить рост которых нарушенная иммунная система не может. Таким образом, иммуногенность опухолей может быть тесно связана с эффективностью иммунологического надзора, в зависимости от которой в организме может происходить селекция тех или иных вариантов опухолевых клеток. Эта концепция подтверждается тем, что опухоли, индуцированные метилхолантреном у мышей, обработанных УФ-излучением. часто являются более иммуногенными, чем опухоли, индуцированные метилхолантреном у нормальных животных.

    Поскольку трансплантация опухолевых клеток у человека невозможна, были предприняты попытки создать экспериментальные системы с использованием экспериментальных животных, в которых было бы возможно поддерживать линии опухолевых клеток человека и тестировать ответы на них. В качестве реципиентов для создания таких систем чаше всего используют мышей, несущих мутации beige и nude, лишенных NK- клеток и Т-клеток, либо мышей SCID, лишенных Т- и В-клеток. Иммунная система таких животных неспособна распознать трансплантационные антигены клеток человека, и поэтому трансплантации как опухолевых клеток, так и иммунокомпетентных клеток человека, отвечающих на опухолевые клетки, проходят успешно.

    Такие мыши с трансплантированными иммунокомпетентными клетками человека получили название «humanized mice».

    В последние годы широкое распространение получили также трансгенные экспериментальные животные и животные-нокауты по иммунологически значимым генам. Трансгенные Т-клеточные рецепторы позволяют получить значительное количество клеток с заранее известной специфичностью и, соответственно, значительно выраженный иммунный ответ к отдельным комбинациям молекула МНС-пептид. Перевод таких трансгенных животных на генетическую основу нокаутов по генам рекомбиназ, осушествляюших реаранжировку Т-клеточных и В-клеточных рецепторов (и поэтому лишенных Т- и В-клеток), позволяет получить трансгенных животных с Т-клетка ми, экспрессирующими только один тип антигенспецифического Т-клеточного рецептора без примеси Т-клеток, экспрессирующих эндогенные рецепторы.

    Мыши, экспрессирующие трансгенный зеленый флуоресцентный белок, могут быть с успехом использованы при изучении процессов метастазирования опухолевых клеток и исследования механизмов дифференцировки предшественников иммунокомпетентных клеток и клеток памяти при адаптивном переносе нетрансгенным реципиентам. Большой интерес в последнее время представляет использование в исследованиях трансгенных моделей с тканеспецифической и стадиоспеци-фической экспрессией антигенов. Следует ожидать, что в скором времени эти модели будут применены для исследования процессов внутритимусной селекции Т-лимфоцитов, специфичных к опухольассоциированным антигенам. Использование нокаутов по иммунологически значимым генам значительно расширяет аналитические возможности исследователя в изучении механизмов индукции противоопухолевого ответа. В частности, использование нокаутов по генам р2-мигроглобулина и транспортеров, ассоциированных с процес-сингом антигенов, позволяет выявить роль эндогенного процессинга и презентации антигена в организме реципиента и понять, распознается ли он непосредственно на опухолевой клетке или для возникновения иммунного ответа на него необходима кросс-презентация дендритными клетками. Использование нокаутов по генам CD4 и CD8 дает возможность оценить роль кооперации этих типов клеток в иммунном ответе на конкретный антиген и определить его зависимость от соответствующей субпопуляции Т-лимфоцитов.

    В последние годы также предпринят ряд попыток генетической модификации опухолевых клеток, нацеленной на усиление иммуногенности опухолевых клеток трансфекцией генов цитокинов и костимулирующих лигандов профессиональных АРС. Наиболее часто для этого используются аденовирусные векторы, позволяющие получить транзитную экспрессию трансгенного белка в опухолевых клетках. Вместе с тем в последние годы все более широкое распространение получают методы трансфекции, основанные на использовании ретровирусных и лентивирусных векторов, позволяющие с высокой эффективностью получать стабильные трансфектанты с фиксированным количеством копий трансгена на геном.

    Несмотря на то, что метод обнаружения опухольспецифического иммунитета по отторжению трансплантированных линий опухолевых клеток был разработан еще в середине прошлого века, он до сих пор остается основным редством оценки эффективности противоопухолевого иммунитета в эксперименте. В той или иной модификации он, как правило, присутствует в экспериментальных работах, нацеленных на разработку противоопухолевых терапевтических вакцин, изменение антигенных свойств опухолевых клеток, усиление их им-муногенности трансфекциями генов цитокинов и костимуляторных лигандов, иммунизацию пептидами и др.

    Т-антигены имеют вирусное происхождение

    Эти антигены обнаруживаются на клетках опухолей, индуцированных вирусами, например мелким ДНК-содержащим вирусом полиомы и вирусом SV40 и вирусами папилломы. Данные вирусы кодируют Т-антигены, свойственные и другим вирусам той же группы. Эти антигены представляют собой ядерные белки, играющие определенную роль в поддержании трансформированного состояния.

    Инфекционные РНК-содержашие онкогенные вирусы вызывают лейкозы и саркомы у животных; обнаружен также по крайней мере один вирус Т-клеточного лейкоза человека. Эти вирусы выходят из инфицированных клеток путем отпочковывания от их клеточной мембраны, приобретая при этом оболочку; в мембране инфицированных ими клеток выявляется гликопротеин вирусной оболочки. Общие антигены ДНК-, как и РНК-содержащих онкогенных вирусов вызывают сильный гуморальный и клеточный ответ, способный обеспечить защиту против опухоли. Поскольку опухоли, вызываемые данным онкогенным вирусом, экспрессируют один и тот же антиген, инбредные мыши, иммунизированные, например, многократными инъекциями облученных клеток опухоли, индуцированной SV40, отторгают опухоли, вызванные данным вирусом, но чувствительны к опухолям, вызываемым вирусом полиомы.

    Для некоторых линий мышей характерна спонтанная активация эндогенных РНК-содержащих онкогенных вирусов, приводящая к развитию лейкоза. У животных других линий опухоли, которые могут экспрессировать вирусные антигены и продуцировать инфекционный вирус лейкоза мышей, образуются в том случае, если им вводить канцерогенное химическое соединение. Такие опухоли экспрессируют как общие опухолеассоииированные антигены, так и опухолеспецифические антигены, рассматриваемые ниже. У организма-хозяина, однако, эндогенные РНК-содержащие вирусы вызывают лишь слабый иммунный ответ, возможно, из-за иммунологической толерантности.

    Специфические опухолевые антигены отражают изменения в опухолевых генах или в экспрессии генов

    К специфическим опухолевым антигенам относят те антигены, которые могут вызвать иммунный ответ на введенные опухолевые клетки, в том случае если животное было предварительно иммунизировано материалом той же опухоли. Такие антигены впервые были выявлены при изучении опухолей, индуцированных у инбредных мышей канцерогенными химическими веществами, и к настоящему времени их природа установлена в описываемых ниже экспериментах.

    Перевиваемую культуру опухолевых клеток от мыши инбредной линии подвергали in vitro воздействию сильного мутагена. Затем из этой культуры получали субклоны мутантных опухолевых клеток, часть которых была неспособна к дальнейшему росту in vivo, если только имплантат не был очень массивным. Мутантные культуры обнаруживали большую иммуногенность, чем родительские опухолевые клетки. При иммунизации одним из этих опухолеотрицательных клонов у генетически идентичных мышей образовывались Тц-клетки, способные уничтожать имплантат только того клона, который был использован для иммунизации, а не родительской или других tum-культур. Эти Тц-клетки затем использовали в качестве зондов для определения мутантного опухолевого антигена при молекулярном клонировании соответствующего гена. В итоге мутантный ген, кодирующий данный опухолевый антиген, был идентифицирован и секвенирован. Сравнение этого гена с гомологичным геном из клеток родительской опухоли показало различие их продуктов всего по одному аминокислотному остатку. В дальнейшем было четко доказано, что такая мутация приводит к образованию иммуногенного антигена, распознаваемого Тц-клетками: если клетки родительской опухоли инкубировали с пептидом из 10 аминокислотных остатков, содержащим и1т_-последовательность, эти клетки затем уничтожались Тц-клетками, однако в случае инкубации с гомологичным пептидом из клеток родительской опухоли лизиса не происходило. Учитывая, что распознавание антигенов Тц-клетками рестриктировано по молекулам МНС класса I. можно предположить, что опухолеспецифичный белок процессируется в опухолевой клетке с образованием пептида, который затем образует комплекс с антигенами МНС класса I и транспортируется на клеточную поверхность.

    Клонированные гены опухолевых антигенов из клеток других turrr-клонов иногда оказывались идентичными родительскому гену. Отличие таких tum--ioiOHOB от родительской линии заключалось в том, что в Шт--клетках происходила сверхэкспрессия данного антигена. Получены убедительные доказательства в пользу существования иммунного ответа, рестриктированного по антигенам МНС класса II, по крайней мере на опухоли человека, однако значительно меньше известно о том, какие опухолевые антигены распознаются в комплексе с антигенами МНС класса II.

    ЗАКЛЮЧЕНИЕ

    Таким образом, противоопухолевый иммунитет в основном определяется антибластической направленностью иммунных лимфоцитов. Это обстоятельство наряду с возможностью создания адоптивного иммунитета сближает противоопухолевый иммунитет с трансплантационным. Как упоминалось выше, экспериментальные модели противоопухолевого иммунитета требуют проведения исследований на сингенных животных, при этом их генетическая однородность каждый раз проверяется методом трансплантации кожи донора опухоли иммунизированным реципиентам. Антибластический эффект учитывают как проявление противоопухолевого иммунитета при условии приживления кожного трансплантата.

    Создание противоопухолевого иммунитета особенно важно в наши дни, т.к. появляется всё больше факторов, вызывающих различные опухоли и предотвращение этих образований является одной из основных задач современной медицины.

     

     

    СПИСОК ЛИТЕРАТУРЫ

    1) Новиков В. В., Добротина Н. А., Бабаев А. А. Иммунология: Учебное пособие. Нижний Новгород: Изд-во ННГУ им. Н. И. Лобачевского, 2004. - 212 с.

    2) Интернет ресурсы

    3) MedUniver.com

     


    написать администратору сайта