Главная страница
Навигация по странице:

  • Медицинский факультет

  • Проверила

  • Функция Регуляция объема крови

  • Регуляция кислотно-основного состояния крови Регуляция артериального давления

  • Регуляция свертывания крови Регуляция обмена кальция

  • Сравнение почечного и коронарного кровотока

  • Основные процессы, обеспечивающие образование мочи

  • Структура клубочкового фильтра

  • Механизмы канальцевой реабсорбции .В канальцах почки происходят два следующих этапа мочеобразования – процессы реабсорбции и секреции

  • Реабсорбция и секреция в почечных канальцах

  • Схема строения эпителия проксимальных канальцев

  • Схема осморегулирующего рефлекса Уменьшение осмотической концентрации – гипоосмия

  • Дополнительная литература

  • Титулний листь (1). Регуляторногомеостатическая функция почек. Регуляция осмотического давления, кислотношелочного равновесия


    Скачать 320.56 Kb.
    НазваниеРегуляторногомеостатическая функция почек. Регуляция осмотического давления, кислотношелочного равновесия
    Дата03.11.2022
    Размер320.56 Kb.
    Формат файлаdocx
    Имя файлаТитулний листь (1).docx
    ТипРеферат
    #768608

    МИНОБРНАУКИ РОССИИ

    федеральное государственное бюджетное

    образовательное учреждение высшего образования

    «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва»



    Медицинский факультет

    Реферат

    на тему:

    «Регуляторно-гомеостатическая функция почек.

    Регуляция осмотического давления, кислотно-шелочного равновесия.»

    Выполнил:

    Студент 416 б группы

    Мирпочоев Ф.И.

    Проверила:

    Бродовская Е.П.

    Саранск 2022

    Функции почек


    Функция

    Регуляция объема крови

    Регуляция осмотической концентрации крови

    Регуляция ионного состава крови

    Регуляция кислотно-основного состояния крови

    Регуляция артериального давления

    Выведение конечных продуктов азотистого обмена

    Регуляция эриропоэза

    Регуляция свертывания крови

    Регуляция обмена кальция

    Регуляция обмена белков, липидов, углеводов

    Выработка биологически активных веществ































    Нефрон и его кровоснабжение


    Почка млекопитающих структурно состоит из двух слоев: внешнего, коркового, и лежащего под ним мозгового слоя, содержащего наружную и внутреннюю части.

    Структурной единицей почки является нефрон, в почке у человека их насчитывается около 1 млн. (схема одного из нефронов представлена на рис.1). Каждый нефрон начинается с двустенной капсулы Шумлянского- Боумена, внутри которой находится клубочек капилляров- гломерула.

    Между стенками капсулы имеется полость, от которой начинается проксимальный каналец (ПК). Следующий за проксимальным канальцем отдел нефрона - нисходящая часть петли Генле; она заканчивается шпилькообразным коленом и далее переходит в восходящую часть петли, расположенную параллельно нисходящей; затем идет дистальный каналец (ДК), который возвращается к капсуле своего нефрона и ложится между приносящей и выносящей артериолами, так что его граница с толстой восходящей петлей Генле (область плотного пятна-macula densa) оказывается вблизи приносящей артериолы. Далее моча поступает в собирательные трубки (СТ), которые транзитом проходят через все слои почки и располагаются параллельно петлям Генле. Строго говоря, СТ не являются частью нефрона, так как имеют другое эмбриональное происхождение, но с физиологической точки зрения они рассматриваются как составная часть нефрона.

    Схема строения нефрона

    Запомните: расположение каждой из частей нефрона в почке, так же как и их взаимное расположение, важно для понимания их участия в процессе мочеобразования.

    В почке человека и млекопитающих существует несколько типов нефронов, отличающихся по расположению клубочков: поверхностные, интракортикальные (лежащие внутри коркового слоя) и юкстамедуллярные (их клубочки находятся у границы коры мозгового вещества (рис.2). Различие между ними заключается в топографии, длине петли Генле и особенностях кровоснабжения. Так, юкстамедуллярные нефроны имеют длинную петлю Генле, спускающуюся глубоко во внутреннее мозговое вещество. В силу этих особенностей они будут принимать участие в процессе концентрирования мочи.

    Кровоснабжение почки


    Займемся теперь кровоснабжением почек. Кровоснабжение в почке играет особую роль, поскольку не только обеспечивает клеточный метаболизм, но и принимает непосредственное участие в мочеобразовании.

    В 1 минуту через сосуды обеих почек у человека проходит около 1200 мл крови, т.е. около 20-25% крови, выбрасываемой сердцем в аорту. Так как масса почек у человека составляет всего лишь 0,43% массы тела,очевиден исключительно высокий уровень органного кровотока (рис.3) Величина почечного плазмотока и кровотока определяется методом очищения по ПАГ (руководство к проведению лабораторных работ).

    Через сосуды коры почки протекает 91-93% крови, поступающей в почку, остальное ее количество снабжает мозговое вещество почки. Кровоток в коре почки в норме составляет 4-5 мл/г ткани. Важной особенностью почечного кровотока является высокий уровень саморегуляции – кровоток остается постоянным при изменении артериального давления боле, чем в два раза (например, с 90 до 190 мм рт.ст.).

     Сравнение почечного и коронарного кровотока

    Артерии почки отходят от брюшного отдела аорты, что обеспечивает высокий уровень артериального давления в приносящих артериолах, по которым кровь поступает в клубочек, содержащий разветвленную капиллярную сеть. Кровь от клубочка оттекает по выносящей артериоле, которая вновь распадается на вторичную сеть капилляров,оплетающих проксимальные и дистальные канальцы (перитубулярные капилляры). Далее по венам кровь покидает почку и поступает в нижнюю полую вену. Из клубочков юкстамедуллярных нефронов выносящая артериола доставляет кровь в мозговое вещество, где образуются прямые сосуды (vasa recta), глубоко спускающиеся в него вместе с петлями Генле и участвующие в осмотическом концентрировании мочи. Таким образом, кровоснабжение почек устроено по типу двух последовательных систем сосудов с регулируемым сопротивлением.

    Основные этапы процесса мочеобразования


    Мочеобразование складывается из трех основных процессов, представленных на рис.4.

    Клубочковой или гломерулярной фильтрации.

    Канальцевой реабсорбции.

    Канальцевой секреции.

    Перейдём к их описанию.

    Клубочковая фильтрация


    Образование мочи в почке начинается с ультрафильтрации плазмы крови в почечных клубочках. Жидкость проходит из просвета кровеносных капилляров в полость капсулы клубочка через клубочковый фильтр.

     Основные процессы, обеспечивающие образование мочи

    Рассмотрим подробнее структуру этого фильтра и силы, обеспечивающие процесс фильтрации.

    Фильтрующая мембрана. Фильтрующая мембрана состоит из трех слоев: эндотелия капилляров, базальной мембраны и внутреннего листка капсулы Шумлянского - Боумена, который образован эпителиальными клетками – подоцитами. (Рис.5).

    Клетки эндотелия капилляров имеют очень тонкие периферические участки, в просвет сосуда выступает лишь область клетки, где находится ядро. Боковые части клетки пронизаны довольно крупными отверстиями, обычно затянутыми тонкими диафрагмами. При нормальной скорости кровотока крупные молекулы белка образуют над этими порами барьерный слой, что служит препятствием для прохождения через поры не только глобулинов, но и альбуминов.

    Таким образом, фенестрированный эндотелий капилляров ограничивает прохождение через клубочковый фильтр форменных элементов и белков, но свободно пропускает низкомолекулярные вещества, растворенные в плазме крови.

    Следующий барьер гломерулярного фильтра – базальная мембрана. Ее «поры» ограничивают прохождение молекул в зависимости от размера, формы и заряда. Так как мембрана имеет сетчатую структуру, образованную тонкими нитями, происходит ограничение прохождения молекул размером более 3,4 нм. Отрицательно заряженная стенка пор затрудняет прохождение молекул с одноименным зарядом. Поры не являются круглыми, что также существенно для ограничения фильтрации альбуминов.

    Структура клубочкового фильтра

    Последним барьером на пути фильтруемых веществ служат подоциты. Их отростки («ножки») прилегают к базальной мембране со стороны капсулы клубочка, между ножками подоцитов находятся пространства, по которым течет фильтруемая жидкость. Однако и в этом случае существует заслон на пути фильтруемых веществ – щелевые мембраны, перегораживающие пространство между ножками подоцитов. Они ограничивают прохождение альбуминов и других молекул с большой молекулярной массой. Поверхность ножек соседних отростков покрыта отрицательно заряженными сиалогликопротеинами, ограничивающими прохождение отрицательно заряженных частиц. Поскольку подоциты содержат внутри отростков актомиозиновые миофибриллы, они могут сокращаться и расслабляться, действуя как микронасосы, откачивающие фильтрат в полость капсулы.

    Такой многослойный фильтр обеспечивает сохранение белков в крови и образование практически безбелковой первичной мочи, в которой содержится большинство неорганических ионов и растворенных низкомолекулярных органических веществ почти в той же концентрации, что и в плазме.

    Перейдем к рассмотрению тех сил, которые обеспечивают процесс фильтрации. Движущей силой фильтрации является эффективное фильтрационное давление (Рф). Оно создаётся разностью между гидростатическим давлением крови в капиллярах клубочка (Pг) и противодействующими ему силами – онкотическим давлением белков плазмы крови (Рон) и гидростатическим давлением жидкости в капсуле клубочка (Рк).

    Соответственно, формула для расчета имеет следующий вид:

    Рф=Рг-(Рон+Рк).

    Подставим числовые значения давлений и произведем расчет:

    Рф= 70 мм рт.ст. – (30мм рт.ст.+20мм рт.ст.)=20мм рт.ст.

    Таким образом, эффективное фильтрационное давление равняется 20 мм рт.ст. Как мы уже сказали, образовавшийся безбелковый фильтрат по своему составу близок плазме крови и имеет такую же, как и плазма, концентрацию осмотически активных веществ – 300 мосм/л. В обеих почках человека за 1 минуту образуется 110-130 мл ультрафильтрата. Таким образом, каждый мл плазмы из 600 мл, проходящих через сосуды почки за 1 минуту (величина почечного плазмотока), теряет примерно 1/5 часть своего объема. Объем профильтровавшейся за минуту первичной мочи принято называть скорость клубочковой фильтрации (СКФ). Метод определения СКФ и почечного плазмотока основан на принципе очищения (подробное описание метода смотри в руководстве к лабораторным работам). Фильтрация считается довольно стабильным процессом, однако СКФ может изменяться при различных физиологических состояниях и при патологии. Регуляция почечного кровотока и СКФ происходит при участии симпатических нервов, ренин-ангиотензиновой системы и других факторов.

    За сутки образуется огромное количество первичной мочи – 180 л, окончательной мочи выделяется лишь 1,5-2,0 л. Остальная жидкость подвергается реабсорбции в почечных канальцах. В результате реабсорбции обратно в кровь возвращается большая часть воды и растворенных в ней веществ, «провалившихся» через фильтр и представляющих ценность для организма. Результатом сложной работы канальцев, в которых, как мы увидим дальее, существует своеобразное «разделение труда», и явится образование окончательной мочи, состав и количество которой будет определятся водно-солевым балансом организма. Перейдем к описанию процессов, происходящих в канальцах.

    Механизмы канальцевой реабсорбции.

    В канальцах почки происходят два следующих этапа мочеобразования – процессы реабсорбции и секреции. Реабсорбция – процесс обратного всасывания веществ из просвета канальцев в кровь, при этом их выделение с мочой уменьшается. Секреция – процесс, обратный реабсорбции, в результате которого продукты, подлежащие выведению (экскреции),транспортируются в просвет канальцев; при этом их выделение с мочой увеличивается. Локализация важнейших транспортных процессов представлена на рис. 6.

    Обращаем ваше внимание на то, что в основе реабсорбции и секреции лежат процессы мембранного транспорта через стенки канальцев. Они универсальны, и в принципе те же, что и действующие при переносе веществ через другие плазматические мембраны (при всасывании в кишечнике, транспорте в капиллярах).

    Реабсорбция и секреция в почечных канальцах.

    Направление стрелок указывает на реабсорбцию и секрецию

    По многообразию транспортных процессов, их интенсивности, специфичности, избирательности - почки можно назвать уникальным органом. Перейдем к рассмотрению конкретных механизмов реабсорбции.

    Проксимальная реабсорбция


    Образовавшийся в клубочках ультрафильтрат далее поступает в проксимальные канальцы. Эпителиальные клетки, образующие стенки проксимальных канальцев, как и все клетки, способные транспортировать вещества, имеют асимметричное строение, то есть, характеризуются направленностью процессов от апикальной к базальной поверхности клетки. Апикальная мембрана клетки, обращенная в просвет канальца, имеет щеточную каемку, почти в 40 раз увеличивающую поверхность всасывания и обладающую большой сорбционной способностью. Базальная мембрана клеток образует складки, пространство между которыми называется базальным лабиринтом. Именно туда и поступает реабсорбированная жидкость, прежде чем попасть в перитубулярные капилляры. Между собой клетки соединяются так называемыми плотными контактами или плотными соединениями. На всем остальном протяжении они разделены довольно широким межклеточным пространством - базолатеральным лабиринтом.

    Схема строения эпителия проксимальных канальцев

    Вы увидите, что для реабсорбции растворённых веществ и воды из просвета канальца в базальный лабиринт и далее в кровь, есть два пути: под номером 1 показан первый путь - трансцеллюлярный – через клетку. В этом случае вещество на своем пути должно преодолеть две плазматические мембраны (апикальную и базальную) и цитоплазму клетки. Второй путь реабсорбции - парацеллюлярный, между клетками - показан под номером 2. Он проходит через зоны плотных контактов. При таком транспорте могут быть использованы механизмы диффузии, осмоса и перенос вещества вместе с растворителем.

    Рассмотрение реабсорбции в проксимальном канальце следует начать с механизмов реабсорбции Nа, поскольку именно с Nа прямо или косвенно связана реабсорбция других веществ. Процесс реабсорбции натрия можно разделить на 3 этапа: прохождение через апикальную мембрану, движение через клетку к базальной мембране и эвакуация из клетки через базальную мембрану в межклеточное пространство.

    Рассмотрим их поэтапно.

    Апикальный транспорт. Вход Nа в клетку через апикальную мембрану представляет собой пассивный процесс. Он происходит по электрохимическому и концентрационному градиенту. Эти градиенты создаются благодаря активному транспорту натрия из клетки через базальные и базолатеральные мембраны (о чем мы расскажем ниже). В апикальной мембране клеток имеются Nа-каналы и Nа-переносчики, облегчающие пассивный вход Nа. Дело в том, что липидная основа мембраны непроницаема для гидрофильного иона Nа даже при наличии большого электрохимического градиента и отрицательного заряда на внутренней поверхности клеточной мембраны. Чтобы ионы Nа могли проникнуть через клеточную мембрану, в ней имеются гидрофильные белки - облегчители (пермеазы), образующие каналы, по которым проходит Nа. Схема транспорта Nа в клетках проксимальных канальцев представлена на рис.8.

    Следующая группа механизмов апикального поступления Nа осуществляется с помощью вторично-активного транспорта. Котранспортёр (переносчик) может переносить Nа и какое-либо второе вещество в одном направлении по механизму симпорта. Примером такого вида транспорта является совместный перенос Nа с глюкозой и Nа с аминокислотами. По другому варианту вещество, например Н+, может выходить из клетки в обмен на ион Nа+, который движется в клетку: этот механизм называется противотранспорт или антипорт. Транспорт Na может быть сопряжён с транспортом бикарбоната и фосфатов. Вошедший в клетку Nа не смешивается с общим Nа клетки, а продвигается к местам эвакуации по специальной транспортной системе каналов, не нарушая клеточную внутреннюю среду.

    Базальный транспорт. Через базальную и базолатеральную мембраны Nа транспортируется активно против электрохимического и концентрационного градиента с помощью Nа+–К+насосов. При этом ион Nа+ обменивается на ион К+. Главная роль в работе насосов принадлежит ферменту Nа++ - АТФазе, которая вызывает распад молекулы АТФ, что и дает энергию, необходимую для реабсорбции. Такой вид транспорта называется первично-активный. То обстоятельство, что Nа+ постоянно откачивается из клетки, весьма важно, т.к. благодаря этому концентрация Nа+ в клетке остается низкой, что и обеспечивает совместно с электрохимическим потенциалом поступление в клетку новых порций натрия.

    Мы рассмотрели как Nа+ реабсорбируется через клетку (трансцеллюлярно), но некоторое количество Nа может проходить через зоны плотных контактов (парацеллюлярно) совместно с ионами Cl-.

    Вслед за электролитами пассивно по осмотическому градиенту из канальцев устремляется вода, она переносится частично через зоны клеточных контактов, частично через клетку по специальным водным каналам. Двигаясь, вода захватывает и уносит в своем потоке растворенные в канальцевой жидкости вещества (главным образом Nа, Cl и мочевину). Этот механизм переноса называется «следование за растворителем» или «перенос веществ вместе с растворителем».

    В проксимальном канальце реабсорбируется большая часть профильтровавшегося Nа (65-80%) и 80% воды. Отличительной особенностью реабсорбции в проксимальном канальце является то, что вслед за Nа и другими осмотически активными веществами в эквивалентных количествах реабсорбируется вода, поэтому жидкость в проксимальном канальце остается изоосмотичной плазме крови, и ее осмотическая концентрация составляет 300 мосм/л.

    Реабсорбция глюкозы. Мы уже упоминали, что через апикальную мембрану глюкоза поступает посредством системы симпорта с Nа. Движение глюкозы опосредованно участием переносчика и является вторично-активным транспортом, поскольку энергия, необходимая для переноса глюкозы через апикальную мембрану, вырабатывается за счет транспортирующих Nа насосов. Через базальную мембрану глюкоза покидает клетку путем облегченной диффузии 

    Осморегуляция


    Осмотическая концентрация и осмотическое давление плазмы крови являются наиболее жесткими константами внутренней среды организма и определяются главным образом соотношением воды и натрия. Механизмы осморегуляции изучены наиболее подробно и вам будет интересно узнать, что создателями учения об осморегулирующей системе организма являются ваши преподаватели – коллектив кафедры нормальной физиологии НГМА под руководством профессора Финкинштейна Я.Д. Осморегулирующая система построена из совокупности осморегулирующих рефлексов, которые компенсируют сдвиги осмолярности посредством изменения экскреции главным образом воды. Следовательно, главная часть этой системы-антидиуретическая. Выведение воды почкой регулируется АДГ и в конечном итоге определяется теми факторами, которые влияют на скорость синтеза и секреции АДГ. Сенсорный механизм антидиуретической системы представлен осморецепторами. Центральные осморецепторы открыл английский физиолог Е. Верней. Он обнаружил осмочувствительные зоны в супраоптических и паравентрикулярных ядрах гипоталамуса. Однако восприятие осмотического давления обеспечивается не только осморецепторами мозга. Идея о том, что осморецепторы могут быть локализованы и в других органах принадлежит А.Г. Гинецинскому. И действительно, периферические осморецепторы были обнаружены в печени, сердце, почке, легких и других органах. Главной осморецепторной зоной является печень, так как именно в нее по системе воротной вены поступают всосавшиеся в кишечнике натрий и вода. Широко распространенные во многих органах и тканях периферические осморецепторы делают возможным постоянное наблюдение за общими и регионарными изменениями осмолярности и непрерывно снабжают центры необходимой информацией.

    Осмотическая концентрация жидкостей внутренней среды, как и их объем, может изменяться в двух направлениях – увеличиваться или уменьшаться. Ее увеличение - гиперосмия может создаться при дефиците поступления воды в организм - дегидратации, или избыточном поступлении соли. При этом включается осморегулирующий рефлекс (рис. 17), возбуждаются осморецепторы и рефлекторно стимулируется секреция АДГ, возрастает водная проницаемость СТ, увеличивается факультативная реабсорбция воды, уменьшается диурез и выделяется небольшой объем гиперосмотичной (концентрированной) мочи. Одновременно увеличивается выведение натрия и осмолярность жидкостей восстанавливается до нормальной. Что касается механизма натрийуреза в этой ситуации, то он не совсем ясен. При значительном обезвоживании организма происходит включение всех регуляторных систем: и объемной и осмотической.

     Схема осморегулирующего рефлекса

    Уменьшение осмотической концентрации – гипоосмия может возникнуть после обильного поступления воды (гипергидратация) или уменьшения поступления соли. Реакция почек в этой ситуации проявляется в увеличении диуреза и снижении экскреции натрия. Включается тот же осморегулирующий рефлекс, возбуждаются осморецепторы, информация поступает в центр, секреция и выделение АДГ тормозится. В результате развивается водный диурез.

    Обратите еще раз внимание на то, что когда почки участвовали в регуляции объема, они параллельно изменяли выведение натрия и воды, а в случае осморегуляции почки изменяют их разнонаправлено, что в этой ситуации является биологически целесообразной реакцией (рисунок 17 – графики).

    Взаимодействие осмотических и объёмных стимулов обеспечивает адекватные для ситуации изменения экскреции воды почкой. В нормальных условиях главным стимулом секреции АДГ является осмотическая концентрация внеклеточной жидкости. При небольших изменениях объёма крови и смещении осмолярности в первую очередь выравнивается осмотическая концентрация крови. При значительных изменениях объёма внутрисосудистой жидкости (более 10%) к системе осморегуляции подключается система регуляции объема.

    Рассмотрим ещё один вопрос. Водно-солевой баланс зависит не только от точно регулируемой экскреции натрия и воды почками, но и от эффективности механизма жажды и солевого аппетита. При неизбежных потерях воды механизм жажды может в какой-то мере обеспечить их компенсацию посредством питья. Что касается натрия, то поддержание его нормальной концентрации во внеклеточной жидкости может осуществляться частично благодаря контролю его потребления (солевой аппетит). Оба чувства формируются при участии ЦНС. Жажда и солевой аппетит, побуждая к поиску воды и натрия стимулируя их потребление, могут частично восстановить водно-солевой гомеостаз, однако, несомненно, что основную роль в обеспечении постоянного состава плазмы крови играют специальные системы, регулирующие выведение натрия и воды почками в точном соответствии потребностям организма.

    Роль почки в регуляции кислотно-основного равновесия


    рН крови является одной из наиболее жёстких констант и колеблется в очень узких пределах 7,35 – 7,45 , и это, несмотря на то, что в результате обмена веществ в кровь из тканей за сутки поступают кислые продукты в количестве, эквивалентном двум литрам концентрированной соляной кислоты. Это количество в двадцать раз превышает все основания, содержащиеся в организме, и тем не менее, реакция крови не претерпевает никаких изменений.

    Постоянство рН крови поддерживается, прежде всего, буферными системами, которые нейтрализуют сильные кислоты и щёлочи, превращая их в слабые кислоты и щёлочи, и тем самым, предотвращая резкое изменение рН крови. Однако, буферные системы, расходуя на эти процессы свои составные компоненты нуждаются в их восстановлении; они имеют ограниченную ёмкость и могут лишь временно сдерживать сдвиги рН. Окончательное слово в этих процессах принадлежит физиологическим регуляторам – органам выделения – лёгким и почкам. Лёгкие выводят летучие соединения, главным образом угольную кислоту, а почки - нелетучие соединения.

    Решающее значение в поддержании постоянства рН крови имеет бикарбонатная буферная система, так как от её составных частей (содержания СО2 и бикарбонатов) главным образом зависит рН крови.

    Любая кислота, поступающая в кровь в результате буферного эффекта отдаёт свой Н+ угольной кислоте, что приводит к увеличению парциального давления СО2, которая возбуждает дыхательный центр, объём вентиляции лёгких возрастает и избыток СО2 выводится из организма. Образовавшаяся кислота поступает в почечные канальцы.

    Дополнительная литература:

    1. А. Вандер Физиология почек.- С-Пб: изд. «Питер», 2000.-256 с.

    2. Дж. А. Шейман Патофизиология почки:пер. с англ.-М.;Восточная Книжная Компания, 1997.-224с.

    3. Ю.В. Наточин Основы физиологии почки.- Л.: Медицина, 1982,-208с.

    4. Я.Д. Финкинштейн Осморегулирующая система организма высших животных,изд « Наука»,Сиб.отд.,Новосибирск, 1983,-126 с.


    написать администратору сайта