Лекция 4 - Режимы работы нейтрали. Режимы работы нейтрали электрических сетей
Скачать 0.5 Mb.
|
Режимы работы нейтрали электрических сетейПо распределённым ёмкостям фазных проводников по отношению к земле протекают токи. Эти токи имеют максимальное значение в начале линии и линейно уменьшаются до нуля к её концу. Величина их зависит от суммарной длины проводников в сети и составляет для неразветвленных сетей 6-10 кВ единицы ампер, а для сильно разветвлённых сетей - до ста и более ампер. Ёмкостные токи всегда значительно меньше токов нагрузки электрических сетей, поэтому их влияние на нагрузку не учитывается. Наиболее частым видом повреждений в современных системах электроснабжения является однофазное короткое замыкание на землю случайное электрическое соединение с землёй находящихся под напряжением частей электроустановки с заземлёнными конструктивными частями или непосредственно с землёй. Ток, проходящий через землю в месте замыкания, называется током однофазного замыкания на землю. В распределительных сетях 6-35 кВ эти повреждения составляют не менее 75 % от общего числа повреждений. В сетях 110 и 220 кВ однофазные повреждения изоляции составляют соответственно 80 % и 90 %. Степень опасности замыканий на землю в основном зависит от состояния нейтрали сети, которое имеет непосредственное отношение к проблемам борьбы с авариями и, следовательно, к надёжности обеспечения потребителей электроэнергией. Нейтраль электроустановки - это общая точка обмоток генераторов или трансформаторов, соединённых в звезду и потенциал которой относительно земли при её нормальном режиме работы равен нулю.
(рис. 1, а).2. Резонансно-заземлённые (компенсированные) сети, т. е. сети,заземлённые через дугогасящую катушку без сердечника.3) Сети с глухим заземлением нейтрали на землю.Короткое замыкание нейтрали на землю принято называть глухим или металлическим замыканием (соединением с землёй).Глухозаземлённой нейтралью называется нейтраль трансформатора или генератора, присоединённая к заземляющему устройству непосредственно или через малое сопротивление, например, через трансформатор тока.
Системы с изолированной нейтральюВ этих сетях нейтраль изолирована от земли. К ней могут быть подключены обладающие большим сопротивлением приборы измерения, сигнализации и защиты, которые не сказываются на особенностях влияния земли на сеть. Расчётная схема замещения системы для нормального симметричного режима работы представлена на рисунке 2, а.Данная расчётная схема характеризуется следующими значениями линейных и фазных напряжений:U A = U B = U C = UФ ,UO =0,I C A = I C B = I C C = IC ,I CA + I CB + I CC = IO =0.В случае повреждения изоляции и последующего полного замыкания, например, фазы А на землю (рис. 2, б) через место аварии К проходит ток, который замыкается через ёмкостные проводимости относительно земли «здоро-вых» фазных проводов.В результате получим, что ёмкостной ток замыкания на землю в системе с изолированной нейтралью равен тройному ёмкостному току «здоровой» фазы в нормальном режиме:I ЗA =3 I C = j 3ωC AU A ,И зависит от напряжения системы, частоты и ёмкости фазы относительно земли, которая, в свою очередь, зависит от конструкции линий сети и их протяжённости.Токи однофазного короткого замыкания на землю в системе с изолированной нейтралью малы по сравнению с токами нагрузки и сами по себе не опасны для системы. При этом работа приёмников электроэнергии в аварийном режиме не нарушается. Возможность бесперебойного электроснабжения приёмников в аварийном режиме однофазного замыкания на землю является основным преимуществом системы с изолированной нейтралью. Однако это преимущество можно использовать без ущерба для срока службы изоляции лишь в тех случаях, когда работа установки с замыканием на землю ограничена сравнительно небольшим периодом времени, необходимым для отыскания и устранения повреждения (не более двух часов), а ток замыкания на землю невелик.Основными недостатками систем с изолированной нейтралью являются:1) повышенные капитальные вложения, вызываемые требуемым уровнем изоляции электроустановок (увеличение напряжения неповреждённых фаз относительно земли до величины линейного напряжения); 2) возможность замыкания фазы на землю через электрическую дугу и появление перемежающихся дуг, имеющих перенапряжения, превосходящие в 2,5–3,2 раза нормальное фазное напряжение, которое распространяется на всю электрически связанную сеть. Рассмотренные недостатки значительно усложняют эксплуатацию систем изолированной нейтралью, ограничивают область их применения системами, где ёмкостной ток однофазного короткого замыкания на землю не может привести к появлению устойчивых перемежающихся дуг.Согласно ПУЭ системы изолированной нейтралью рекомендуются при ёмкостных токах однофазного КЗ на землю не более:
Если токи однофазного КЗ на землю превышают указанные выше значения, то применяют либо компенсацию ёмкостных токов путём введения в нейтраль дугогасящей катушки, либо заземление нейтрали.Система с нейтралью, заземлённой через дугогасящую катушку: а – расчётная схема замещения в нормальном режиме работы; б – расчётная схема замещения в аварийном режимеДля уменьшения ёмкостных токов однофазного замыкания на землю между нейтралью источников или приёмников электроэнергии и землёй вклю-чаются компенсирующие устройства: заземляющие катушки с настроенной ин-дуктивностью или трёхфазные заземляющие трансформаторы. Наибольшее распространение получили заземляющие катушки, называемые также дугогасящими. Расчётные схемы в нормальном и аварийном режимах работы приведены на рисунке 3.Системы с компенсированной нейтралью Система с глухозаземлённой нейтралью: а – расчётная схема замещения в аварийном режиме работы; б – векторная диаграмма напряженийОднофазное замыкание на землю (например, фазы А) в системе с глухо-заземлённой нейтралью (рис.4) представляет собой однофазное короткое замыкание, так как повреждённая фаза оказывается короткозамкнутой через землю на нейтраль трансформатора или генератора. Ток в месте повреждения ограничен только сопротивлениями линий и внутренним сопротивлением источника питания и поэтому является током КЗ. Данный ток практически не зависит от величины сопротивления изоляции и ёмкости системы относительно земли.Системы с глухозаземлённой нейтралью При глухом заземлении нейтрали величина тока короткого замыкания может достигать больших значений (сотни ампер).Основные достоинства системы с глухим заземлением нейтрали заключаются в следующем:
Однако система с глухим заземлением нейтрали имеет некоторые недостатки, которые заключаются в следующем:
Системы с заземлённой нейтралью при соединении с землёй через активное сопротивление При заземлении нейтрали через активное сопротивление ток в месте по-вреждения будет больше ёмкостного тока замыкания на землю (но меньше, чем при заземлении нейтрали через индуктивное сопротивление), а напряжения «здоровых» фаз относительно земли могут быть выше, чем в системе с изоли-рованной нейтралью – (1,73–1,9)UФ . При правильно выбранной величине активного сопротивления устойчивость системы при однофазных замыканиях на землю обычно выше, чем при глухозаземлённной нейтрали. Заземление нейтрали через активное сопротивле-ние является эффективной мерой для предотвращения перенапряжений при переходных процессах на землю. Система с нейтралью, заземлённая через активное сопротивление, по сравнению с системой, нейтраль которой заземлена через индуктивное, имеет следующие недостатки;
|