Презентация 12. Решение по использованию данной технологии, изготовителей, специалистов по внедрению и, конечно же пользователей
Скачать 1.09 Mb.
|
RFID-технологии Выполнила студентка группы ИСП-210 Дубинкина Зинаида Введение Радиочастотная идентификация (radio frequency identification, RFID) является одной из наиболее заметно развивающихся современных технологий. Её использование затрагивает чрезвычайно широкий спектр представителей человеческого общества (тех, кто принимает решение по использованию данной технологии, изготовителей, специалистов по внедрению и, конечно же – пользователей). Обзор технологии В технологии радиочастотной идентификации используются радиоволны для автоматической идентификации физических объектов (как живых существ, так и неодушевлённых предметов). Следовательно, диапазон объектов, которые могут идентифицироваться с помощью RFID, охватывает практически всё на планете (и за её пределами). Таким образом, RFID является примером технологии автоматической идентификации (automatic identification, Auto-ID), с помощью которой можно идентифицировать физический объект. Классификация типов частот RFID Классификация типов частот RFID выглядит следующим образом:
Низкими считаются частоты между 30 и 300 кГц, и в системах RFID обычно используются частоты в диапазоне от 125 до 134 кГц. Типичная НЧ RFID-система работает на частоте 125 или 134,2 кГц. В RFID-системах, работающих на низких частотах, обычно используются пассивные метки, данные от метки к ридеру передаются с низкими скоростями, и они особенно хорошо подходят для рабочей среды, содержащей металлы, жидкости, различные виды загрязнений и снег (это очень важная характеристика НЧ-систем). Изготовителями также поставляются активные НЧ-метки. Вследствие высокой обработанности этого типа меток системы НЧ-метками, возможно, имеют самое большое количество внедрённых реализаций. НЧ-диапазон принят во всемирном масштабе. Классификация типов частот RFID ВЧ находятся в диапазоне от 3 до 30 МГц, и типичной частотой, используемой в ВЧ RFID-системах, является 13,56 МГц. В типичной ВЧ RFID-системе используются пассивные метки, данные от метки к ридеру передаются с низкой скоростью и обеспечиваются хорошие рабочие характеристики в присутствии металлов и жидкостей. ВЧ-системы применяются также широко, особенно в больницах (где они не взаимодействуют с уже существующим оборудованием). ВЧ-диапазон принят во всемирном масштабе. Классификация типов частот RFID УВЧ находятся в диапазоне от 300 МГц до 1 ГГц. Типичная УВЧ RFID-система работает на частотах 915 МГц в Соединённых Штатах и 868 МГц в Европе. Следовательно, в УВЧ-системе могут использоваться как активные, так и пассивные метки, данные между меткой и ридером передаются с высокой скоростью, но не обеспечиваются высокие характеристики в присутствии металлов и жидкостей (правда, не на нижних частотах УВЧ-диапазона 315 и 433 МГц). Развёртывание УВЧ RFID-систем начало широко распространяться на основе недавних заказов на них от нескольких крупных частных и государственных предприятий, таких, как международные и национальные компании розничной торговли, Министерство обороны США и т.д. УВЧ-диапазон не принят во всемирном масштабе. Классификация типов частот RFID Микроволновые частоты находятся в диапазоне до 1 ГГц. Типичная микроволновая RFID-система работает либо на 2,25, либо на 5,8 ГГц (хотя первая из частот более распространена); в ней могут использоваться как полуактивные, так и пассивные метки, данные между меткой и ридером передаются с самой высокой скоростью и обеспечиваются саамы низкие рабочие характеристики в присутствии металлов и жидкостей. Вследствие того что длина антенны обратно пропорциональна частоте, антенна пассивной метки, работающей в микроволновом диапазоне, имеет самую малую длину (что ведёт к малому размеру метки, поскольку микрочип метки также может изготовляться очень малого размера). Частотный диапазон 2,4 ГГц называется промышленным, научным и медицинским диапазоном (Industry, Scientific, and Medical, ISM) и принят во всемирном масштабе. Принципы работы RFID-технологии Радиотехническое устройство, называемое меткой (tag), прикрепляется к объекту, который необходимо идентифицировать. В данной метке хранятся уникальные идентификационные данные об объекте, к которому она прикрепляется. Когда такой отмеченный объект подносится к соответствующему считывающему устройству – ридеру RFID, метка передаёт эти данные в ридер (через антенну ридера). Принципы работы RFID-технологии Затем ридер читает данные и может ретранслировать их прикладной программе, выполняющейся на компьютере, через подходящие для этого каналы связи, например сетевое или последовательное соединение, прикладной программе, выполняющейся на компьютере. После этого данная программа может использовать такие уникальные данные для идентификации объекта, поднесённого к ридеру. Она может затем выполнить самые различные действия, например обновление информации в базе данных о местоположении данного объекта, посылку сигнала тревоги персоналу торгового зала или полностью игнорировать данные (например, при повторном их считывании). RFID-система RFID-система – это составляющий единое целое набор компонентов, реализующий какое-либо RFID-решение. RFID-система состоит из следующих компонентов:
Метка (tag) RFID – это устройство, способное хранить данные и передавать их ридеру бесконтактным способом с помощью радиоволн. Классификация RFID-меток может быть выполнена двумя различными способами. В приведённом ниже перечне показан первый способ классификации, основанный на наличии в метке встроенного источника питания и/или возможности поддержки специализированных задач:
RFID-ридер, называемый также устройством опроса, является прибором, способным читать данные из совместимой с ним RFID-метки и записывать в неё данные. Таким образом, читающее устройство - ридер является также записывающим устройством. Действие по записи данных метки и уникального связывания её с объектом называется вводом метки в эксплуатацию. Таким же образом вывод метки из эксплуатации означает аннулирование связи метки с отмечаемым объектом и, как вариант, её уничтожение. Время, в течение которого ридер может излучать радиочастотную энергию для считывания метки, называется рабочим циклом ридера. Значения рабочих циклов ридеров ограничиваются международными нормативами. Антенна ридера Ридер осуществляет связь с меткой через антенну ридера – отдельное устройство, физически присоединённое к одному из антенных портов ридера с помощью кабеля. Длина этого кабеля обычно находится в пределах от 6 до 25 футов. Один ридер может поддерживать до 4 антенн. Антенна ридера также называется элементом связи, потому что она создаёт электромагнитное поле для связи с меткой. Антенна транслирует радиосигнал передатчика в окружающую среду и принимает ответные сигналы метки как компонент ридера. Контроллер Контроллер является устройством-посредником, позволяющим внешнему объекту осуществлять информационный обмен с ридером и его управление вместе с оповещающими и исполнительными устройствами. связанными с этим ридером. Контроллер – это единственный компонент RFID-системы (или ридера, в зависимости от точки зрения на неё), через который возможен информационный обмен ридера; эту функцию не обеспечивает никакое другое средство. Контроллер для ридера может быть встроенным в ридер или может представлять собой отдельный компонент. Датчик, оповещающее и исполнительное устройства Ридер не обязательно должен быть постоянно во включённом состоянии; его можно запускать (и останавливать) автоматически, когда это бывает необходимо. для такой цели к ридеру может быть присоединён внешний датчик. Датчик затем может использоваться для включения-выключения ридера по некоторому внешнему событию, обнаруживаемому этим датчиком. Таким образом, датчик может выполнять функции триггера входа ридера. Датчик, оповещающее и исполнительное устройства Оповещающее устройство представляет собой электронный сигнализатор или индикатор. Примерами оповещателей являются звуковые сигнализаторы, стробоскопические световые фонари, секционные фонари и т.д. Секционный фонарь состоит из вертикального набора индикаторов разного цвета и хорошо подходит для отображения всевозможных состояний различных характеристик системы. Например, красный индикатор может означать недействительные или неправильные данные метки в зоне чтения, указывать на действительность прочитанных данных метки, а жёлтый может сигнализировать об отсутствии сетевого соединения между ридером и контроллером. Система хост-компьютера и программного обеспечения – это всеохватывающий термин, объединяющий аппаратные и программные компоненты, стоящие отдельно от аппаратных средств RFID-системы (т.е. от ридера, метки и антенны); такая система состоит из следующих четырёх компонентов: оконечных интерфейса/системы;
Этот компонент обеспечивает подключаемость, а также функции безопасности и системного администрирования для различных компонентов RFID-системы и, таким образом, является неотъемлемой частью данной системы. он включает в себя проводные и беспроводные сетевые и последовательные соединения между ридерами, контроллерами и компьютерами. Типы беспроводных сетей могут находиться в диапазоне от персональной сети по технологии Bluetooth и локальной сети по технологии 802.11х до глобальной сети по технологии 2.5G или 3G. Например, сети спутниковой связи, использующие геосинхронные спутники L-диапазона, также становятся всё более реальными для RFID-систем, которым необходимо работать в очень большой географической зоне, где не гарантируется полное проникновение в неё инфраструктуры ридеров. Преимущества RFID
В данной работе сделана попытка предоставить факты о технологии RFID в непредвзятой манере как с теоретической, так и с практической точки зрения. Базовой целью было обеспечить солидным пониманием различных аспектов данной технологии. Из данной работы можно узнать о создании реальных RFID-систем. Можно использовать эти знания для руководства реализацией собственных RFID-решений. RFID является важной технологией. Компания просто не может игнорировать обширный потенциал RFID и её влияние. Рано или поздно каждая компания скорее всего будет иметь дело с этой технологией тем или иным образом. |