Главная страница

РГР Логистика. РГР_М_1_. Решение задач линейного программирования в пакетах Mathcad и ms excel


Скачать 1.5 Mb.
НазваниеРешение задач линейного программирования в пакетах Mathcad и ms excel
АнкорРГР Логистика
Дата01.05.2021
Размер1.5 Mb.
Формат файлаdoc
Имя файлаРГР_М_1_.doc
ТипРешение
#200627
страница2 из 7
1   2   3   4   5   6   7

Варианты заданий. Решить задачи ЛП в пакетах MathCAD и MS Excel.




1) 3x1 + 4x2 → max

6x1 + 11x2 ≤ 50

12x1 + 6x2 ≤ 54

6x1 − 3x2 ≥ 15

28x1 + 56x2 ≥ 112

x1, x2 ≥ 0.

2) 8x1 + 2x2 → max

22x1 + 7x2 ≤ 77

4x1 + 9x2 ≥ 18

15x1 + 10x2 ≤ 60

4x1 + 8x2 ≤ 16

x1, x2 ≥ 0.


3) 15x1 +13x2 → max

12x1 + 6x2 ≤ 32

8x1 ≤ 9

6x1 +14x2 ≤ 39

4x1 +15x2 ≤ 18

x1, x2 ≥ 0.

4) 12x1 + 4x2 → max

11x1 + 5x2 ≤ 31

7x1 7

2x1 −16x2 ≥ 6

9x1 + 3x2 ≤ 38

x1, x2 ≥ 0.


5) 7x1 + 6x2 → max
16x1 − 2x2 ≤ 18

8x1 + 4x2 ≤ 20

13x1 + 3x2 4

x1, x2 ≥ 0.


6) 7x1 + 5x2 → max
4x1 + 4x2 ≤ 26

3x1 − 16x2 ≥ −18

14x1 − 2x2 ≤ 10

18x1 + 16x2 8

x1, x2 ≥ 0.


  1. x1 + 3x2 → max


−3x1 + 16x2 ≤ 32

5x1 + 6x2 ≤ 17

14x1 + 5x2 ≤ 30

4x1 + 4x2 5

x1, x2 ≥ 0.


8) −2x1 → max

5x1 + 5x2 ≤ 39

−2x1 + 14x2 ≤ 5

2x1 − 12x2 6

x1 + 10x2 6

x1, x2 ≥ 0.



  1. 4x1 + 7x2 → max


5x1 + 15x2 ≤ 16

2x1 + 3x2 ≥ −1

x1 + 14x2 ≤ 7

x1 + 4x2 ≥ 1

x1, x2 ≥ 0.


  1. 9x1 + 2x2 → max


11x1 +2x2 ≤ 42

−2x1 + 8x2 ≤ 19

14x1 + 6x2 ≤ 38

13x1 + 2x2 ≤ 26

x1, x2 ≥ 0.



11) 3x1 + 5x2 → max

15x1 + 10x2 ≤ 60

2x1 − 3x2 ≥ 1

28x1 + 56x2 ≥ 112

10x1 + 15x2 ≤ 45

x1, x2 ≥ 0.



12) 2x1 + 11x2 → max
16x1 + x2 ≤ 19

13x1 + 20x2 ≤ 14

10x1 + 6x2 ≤ 13

6x1 − 3x2 6

x1, x2 ≥ 0.


13) 13x1 + 8x2 → max
9x1 + 3x2 ≤ 28

9x1 + 8x2 ≤ 35

x1 + 8x2 ≤ 40

2x1 + 7x2 ≤ 20

x1, x2 ≥ 0.



14) 5x1 + 9x2 → max

8x1 − 5x2 ≤ −3

−3x1 + 12x2 ≤ 42

2x1 + x2 ≤ 44

5x2 ≤ 11

x1, x2 ≥ 0.


15) x1 + 6x2 → max
14x1 + 21x2 ≤ 28

20x1 + 35x2 ≤ 70

12x1 − 9x2 ≥ 12

21x1 + 15x2 ≤ 75

x1, x2 ≥ 0.


16) 2x1 + 3x2 → max

8x1 + 9x2 ≤ 36

10x1 +14x2 ≥ 12

4x1 + 8x2 ≤ 16

6x1 − 3x2 9

x1, x2 ≥ 0.


17) 2x1 + x2 → max

14x1 + 10x2 ≤ 23

2x1 + 8x2 ≤ 25

15x1 + 6x2 ≤ 32

18x1 − 5x2 ≤ 26

x1, x2 ≥ 0.


18) 5x1 + 6x2 → max

13x1 + 5x2 ≤ 18

3x1 + x2 ≤ 4

4x1 + 8x2 ≤ 10

2x1 +11x2 ≥ 6

x1, x2 ≥ 0.


19) 4x1 + x2 → max

x1 + 5x2 ≤ 6

16x1 + 4x2 ≤ 12

10x1 + x2 ≤ 6

3x1 − 3x2 ≤ 43

x1, x2 ≥ 0.


20) 4x1 + 5x2 → max

9x1 ≤ 15

15x2 ≤ 6

−2x1 + 13x2 ≤ 31

2x1 + 3x2 ≤ 39

x1, x2 ≥ 0.



21) 7x1 + 2x2 → min

3x1 + 12x2 ≤ 30

10x1 + 3x2 ≤ 24

9x1 − 2x2 ≥ 12

11x1 + 24x2 ≥ 48

x1, x2 ≥ 0.


22) 3x1 + 2x2 → min

2x1 + 7x2 ≤ 17

4x1 + x2 ≥ 8

5x1 + 10x2 ≤ 20

3x1 + 5x2 ≤ 15

x1, x2 ≥ 0.


23) 5x1 + 7x2 → max

2x1 + 8x2 ≤ 24

6x1 ≤ 9

3x1 +10x2 ≤ 30

4x1 +12x2 ≤ 35

x1, x2 ≥ 0.


24) 9x1 + 4x2 → max

13x1 + 2x2 ≤ 22

4x1 7

4x1 −10x2 ≥ 5

7x1 + 13x2 ≤ 38

x1, x2 ≥ 0.


25) 2x1 + 6x2 → max
11x1 − 4x2 ≤ 22

6x1 + 4x2 ≤ 21

3x1 + x2 ≤ 14

x1, x2 ≥ 0.



26) 3x1 + 2x2 → max
5x1 + 4x2 ≤ 16

3x1 − 10x2 ≥ −11

4x1 − 5x2 ≤ 10

3x1 + 10x2 8

x1, x2 ≥ 0.


27) x1 + 7x2 → max
−2x1 + 13x2 ≤ 26

4x1 + 9x2 ≤ 28

12x1 + 5x2 ≤ 32

x1 + 2x2 5

x1, x2 ≥ 0.


28) 3x1 → max

7x1 + 5x2 ≤ 29

−4x1 + 12x2 ≤ 5

2x1 − 9 x2 6

x1 + 13x2 7

x1, x2 ≥ 0.


29) 4x1 + 7x2 → max
5x1 + 15x2 ≤ 16

2x1 + 3x2 ≥ −1

x1 + 14x2 ≤ 7

x1 + 4x2 ≥ 1

x1, x2 ≥ 0.


30) 3x1 + 2x2 → max
12x1 +7x2 ≤ 32

−4x1 + 8x2 ≤ 15

12x1 + 6x2 ≤ 38

10x1 + 2x2 ≤ 26

x1, x2 ≥ 0.



1   2   3   4   5   6   7


написать администратору сайта