Главная страница
Навигация по странице:

  • Александр Попов Слайд 3 Александр Попов – изобретатель радио. Уравнения и опыты

  • Слайд 6 1896 – год рождения радио

  • Слайд 7 Теплый ламповый звук

  • Слайд 9 Числа и компьютеры

  • Имант Фрейман, один из основателей отечественной радиотехники Слайд 12 Гильермо Маркони

  • Слайд 14 Никола Тесла

  • Изобретение радио. Слайд 1 Титул. Тема Изобретение радио. Предисловие к презентации


    Скачать 20.58 Kb.
    НазваниеСлайд 1 Титул. Тема Изобретение радио. Предисловие к презентации
    АнкорИзобретение радио
    Дата22.12.2022
    Размер20.58 Kb.
    Формат файлаdocx
    Имя файлаИзобретение радио.docx
    ТипДокументы
    #859752

    Слайд 1

    Титул. Тема «Изобретение радио».

    Предисловие к презентации: изобретение радио приписывают аж трём разным учёным. В России считается, что это сделал Александр Попов, в Европе авторство отдают Гульермо Маркони, а в США уверены — постарался Никола Тесла. Надеюсь, моя работа даст ясно понять, кто изобретатель.

    Слайд 2

    «Если не современники, то, может быть, потомки наши поймут, сколь велика моя преданность нашей Родине и как счастлив я, что не за рубежом, а в России открыто новое средство связи»

    Александр Попов

    Слайд 3

    Александр Попов – изобретатель радио. Уравнения и опыты

    История радио началась, когда Александру Попову было шесть лет, а его визави Гульельмо Маркони даже не родился. В 1865 году один из величайших физиков XIX века Джеймс Максвелл опубликовал статью "Динамическая теория электромагнитного поля", где математически описал электрическое и магнитное поля. Его уравнения указывали на то, что свет представляет собой колебания электромагнитного поля и что могут существовать другие электромагнитные волны, невидимые глазу.

    На то, чтобы обнаружить такие волны, ушло еще 20 лет. В 1880-х годах Генрих Герц сумел получить их с помощью электрического разряда. Немец доказал, что эти волны отражаются от разных поверхностей и преломляются при прохождении через призму из битума, непрозрачную для видимого света.

    Слайд 4

    Сообщения об опытах Герца подстегнули интерес ученых по всему миру. В августе 1894 года британец Оливер Лодж прочел лекцию о радиоволнах, где среди прочих опытов продемонстрировал, как они передаются на расстояние примерно полсотни метров. Но Лодж скорее развивал эксперименты по обнаружению радиоволн, чем целенаправленно разрабатывал новое средство связи. Физики могли фиксировать волны на все большем расстоянии, но до Попова и Маркони дальность не превышала сотни метров. Для практического применения этого было мало.

    Слайд 5

    7 мая 1895 года Александр Попов представил прибор для регистрации электромагнитных всплесков при грозовых разрядах, а спустя год, 24 марта 1896-го, продемонстрировал передачу радиосообщения из одного здания в другое. Гульельмо Маркони тоже сконструировал сначала "разрядоотметчик", а затем и радиотелеграф, причем еще в 1894–1895 годах, но свои передатчик и приемник показал публике только в сентябре 1896-го. Сделал он это не на родине, а в Великобритании: итальянское министерство телеграфа и почты работой 20-летнего изобретателя не заинтересовалось.

    Слайд 6

    1896 – год рождения радио

    1896 год стал годом рождения радио. Посылать в эфир голос с музыкой тогда еще не умели — можно было лишь зафиксировать, что неподалеку излучались радиоволны. Сигнал передавали азбукой Морзе, попеременно включая и выключая передатчики. Ими служили так называемые разрядники: они создавали радиоволны, если между двумя контактами пропускали искру. Разрядники оказались тупиковой ветвью технической эволюции: эти сложные громоздкие установки потребляли очень много энергии и вдобавок испускали сигналы сразу по всему радиодиапазону, мешая друг другу. По сути, первое радио было беспроводным телеграфом, к тому же неудобным.

    Слайд 7

    Теплый ламповый звук

    Для передачи звука или других данных сигнал нужно модулировать, то есть изменять волну во времени. Аппараты Попова и Маркони не позволяли это сделать.

    Чтобы повлиять на частоту или амплитуду волны, нужны детали, способные менять протекающий через них ток в ответ на слабый электрический сигнал. Этими элементами стали радиолампы — стеклянные баллончики с откачанным воздухом и впаянными металлическими частями вроде тех, что уже использовались для освещения.

    Слайд 8

    Несмотря на хрупкость, ненадежность и нагрев во время работы, лампы позволили создать "полноценное" радио и еще множество других полезных изобретений: от радиоуправляемой техники (первая попытка создать беспилотный самолет была предпринята еще в Первую мировую войну) до телевидения и радаров.

    Теория Максвелла и опыты Герца позволили передавать сигнал без проводов, сквозь непрозрачные препятствия и на многие сотни километров. Изобретение радиоламп и развитие электроники сделало возможным передачу сначала звука, потом изображения — и радио появилось в каждом доме. Следующей революцией был переход к "цифре" на замену аналоговой технике.

    Слайд 9

    Числа и компьютеры

    Третья революция, как когда-то — работы Джеймса Максвелла, тоже была связана с математикой. Но цифровой скачок в XX веке начался не с построения теории об устройстве материи, а с нудных арифметических расчетов.

    Ко времени между мировыми войнами наука и техника развились настолько, что большинству квалифицированных кадров постоянно приходилось что-то считать. Бухгалтеры сводили баланс, инженеры рассчитывали прочность конструкций, государственные служащие вели учет, а ученым нужно было обрабатывать результаты экспериментов. С началом новой войны специалистам пришлось взламывать вражеские шифры и вести расчеты для создания ядерного оружия. Всем им нужна была универсальная и быстрая вычислительная машина.

    Слайд 10

    Первые такие агрегаты делали механическими, но вскоре инженеры нашли решение куда удачнее. Если морзянка кодирует буквы, то схожие сигналы можно использовать и для цифр. Электрические импульсы, несущие сигнал, распространяются со скоростью света, поэтому операции с ними занимают ничтожные доли секунды. Кодирование чисел электрическими сигналами и создание электронных схем для обработки и хранения таких сигналов позволили создать универсальный вычислитель. По-английски "вычислять" будет to compute. Устройство так и назвали — компьютер.

    Вскоре стало понятно, что серия электрических импульсов может кодировать не только числа, но и те же буквы, что можно взять картинку или звук и превратить их в последовательность сигналов. Универсальность компьютера позволяла не просто вести инженерные или бухгалтерские расчеты, но и выполнять любую программу — в теории, делать с любой информацией все, что угодно. Вот только радиолампы, несмотря на все ухищрения инженеров, продолжали греться и перегорать, поэтому собрать компьютер было весьма трудоемкой задачей.

    Проблему решили с помощью полупроводниковых транзисторов. Подобно радиолампам, транзисторы меняли проходящий ток под действием слабого сигнала, но потребляли меньше энергии и занимали меньше места. В современных микросхемах размером с ноготь бывает несколько миллиардов транзисторов, которые безотказно работают десятки лет.

    Слайд 11

    А ещё Попов использовал в своём устройстве антенну. Этот элемент позволил учёному претендовать на лавры «отца радио». В журнале «Электричество» 1925 года российский учёный и основатель радиотехники Имант Фрейман так объяснял вклад коллеги:

    «Был известен индуктор, могущий дать при искровом разряде ток высокой частоты в колебательной электрической цепи, был известен когерер, могущий выявить наличие тока высокой частоты; орган же, связывающий внешнее электромагнитное поле с теми цепями, в которых можно было возбудить или выявить ток высокой частоты, однако, известен не был; вибратор Герца ни в коем случае не может почитаться за технический прообраз радиосети»,— его нужно было искать в другом месте,— и немалая заслуга Попова заключается в том, что он этот прообраз искал и нашёл».

    Имант Фрейман, один из основателей отечественной радиотехники

    Слайд 12

    Гильермо Маркони

    Маркони в 1896 году первым получил патент на гаджет, способный передавать и принимать радиоволны. Его прибор был очень похож на изобретение как Попова, так и Теслы, а назывался «Усовершенствования в передаче электрических импульсов и сигналов в передающем аппарате».

    В декабре 1901 года итальянец передал через Атлантический океан сигнал на азбуке Морзе. Эта новость дала понять научному сообществу — передавать волны за горизонт можно, причём над водой тоже. Более того, так получается даже быстрее.

    Остальная слава итальянца обусловлена тем, что он толково продвигал свои радиоприборы — например, провёл первый радиорепортаж. Когда началась очередная парусная регата, он оснастил радиоаппаратурой яхту принца Уэльского. Тот незадолго до заплыва повредил ногу, и в Британии очень волновались, как же сын королевы Виктории справится с гонками. Приёмник Маркони бесперебойно поставлял сводки о здоровье аристократа — эти новости радостно подхватывала пресса. Вскоре всё королевство узнало не только о погоде на море, но и об изобретениях итальянца.

    Слайд 13

    Приёмники Маркони начали расходиться по судам и домам. Да, это больше заслуга рекламы, но повсеместное распространение радио спасло сотни жизней. Например, экипаж «Титаника» подал сигнал SOS именно по аппарату, установленному «Международной компанией морской связи Маркони». Если бы не это устройство — неизвестно, сколько людей удалось бы спасти.

    Правда, обошлось бы вообще без жертв, если бы Маркони не препятствовал установке на кораблях оборудования других компаний. В ту ночь на расстоянии всего восьми километров от «Титаника» проплывал пароход «Калифорниан», но из-за старого приёмника там не распознали сигнал. Из других «грехов» изобретателя: он состоял в фашистской партии, фотографировался с Муссолини, а также провоцировал добропорядочных советских граждан на преклонение перед Западом.

    Слайд 14

    Никола Тесла

    Он изобрёл электрический счётчик, разработал теорию полей, спровоцировав постройку Ниагарской ГЭС, изучил влияние тока на человеческий организм, а ещё придумал фантастический резонатор и, возможно, первый электромобиль.

    Серб раньше всех приблизился к созданию приёмника электромагнитных волн. Об этом он заговорил ещё в 1890 году: «Недорогой аппарат позволит владельцу слушать в море или на земле музыку или песни, речь политического лидера, выдающегося учёного или проповеди священника, находящегося на огромном расстоянии». А в 1893-м Тесла выступил с докладом «О свете и других высокочастотных явлениях» в Институте Франклина в Филадельфии. Там он описал приёмник и передатчик, антенну, заземление, контур, катушку индуктивности, конденсатор и даже репродуктор, придуманный им ещё в Будапеште.

    Слайд 15

    С помощью огромного резонатора он собирался гнать ток в любую точку планеты. Например, так Тесла описывал одну из станций: «Эта станция позволяет получить электрические мощности до десяти миллионов лошадиных сил. Она рассчитана на обслуживание всех возможных технических достижений без излишних затрат».

    Помимо безумных амбиций, помехой для получения патента мог стать и масштабный пожар в лаборатории Теслы в 1895 году. Восстановление записей и нервов, конечно же, потребовало времени, и вступить в борьбу за свои права исследователь смог лишь значительно позднее.

    Слайд 16

    Спасибо за внимание.


    написать администратору сайта