Главная страница

Содержание 1 Вопрос 1 Конструкция сердечников трансформатора. 2


Скачать 3.04 Mb.
НазваниеСодержание 1 Вопрос 1 Конструкция сердечников трансформатора. 2
АнкорOtvety_na_bilety_k_ekzamenam_obschy.docx
Дата28.01.2017
Размер3.04 Mb.
Формат файлаdocx
Имя файлаOtvety_na_bilety_k_ekzamenam_obschy.docx
ТипДокументы
#771
страница29 из 31
1   ...   23   24   25   26   27   28   29   30   31

54. Метод симметричных составляющих. Применение метода для анализа несимметричных режимов. Однофазное КЗ.


Метод симметричных составляющих.

При проектировании и эксплуатации электроэнергетических систем приходится считаться с появлением повреждений и аварийных режимов.

Расчёт таких режимов крайне важен для разработки мер предотвращения тяжёлых последствий аварий. Все возможные виды повреждений приводят к возникновению несимметрии, которую делят на две группы: поперечная и продольная.

Поперечная: любая неравномерная нагрузка, а так же замыкание между фазами и замыкание фазы на землю (рис.13.1).

Продольная несимметрия возникает, если в рассечку линий включают элементы с неодинаковым сопротивлением или при обрыве линейных проводов (рис.13.2).



Трёхфазные цепи могут содержать устройства, наличие которых существенно усложняет расчёт несимметричных режимов(трёхфазные электрические машины, трёхфазные трансформаторы и линии передач)

В этом случае приходится решать дифференциальные уравнения с переменным коэффициентами или оперировать с сопротивлениями, величины которых зависят от тока.

Метод симметричных составляющих позволяет привести задачу к уравнениям с постоянными коэффициентами и использовать обычные приёмы электротехники – метод наложения, принцип компенсации, метод преобразования.

Однофазное короткое замыкание — короткое замыкание на землю в трехфазной электроэнергетической системе с глухо- или эффективно заземленными нейтралями силовых элементов, при котором с землей соединяется только одна фаза.

55. Потери мощности и КПД асинхронного двигателя.


Преобразование энергии в асинхронном двигателе, как и в других электрических машинах, связано с потерями энергии. Эти потери делятся на механические, магнитные и электрические.

Из сети в обмотку статора поступает мощность Р1. Часть этой мощности расходуется на покрытие магнитных потерь в сердечнике статора рс1, а также в обмотке статора на покрытие электрических потерь, обусловленных нагревом обмотки,

рэ1 = m1I12r1
Оставшаяся часть мощности при помощи магнитного потока передается на ротор и поэтому называется электромагнитной мощностью 

Рэм = Р1 - (рc1 + рэ1).


Часть электромагнитной мощности затрачивается на покрытие электрических потерь в обмотке ротора

рэ2 = m2I22r2 = m1I’22r’2.


Остальная часть электромагнитной мощности преобразуется в механическую мощность двигателя, называемую полной механической мощностью.

Р’2 = Рэм - рэ2.

Таким образом, полная механическая мощность


Р’2 = m1I’22r’2[(1-s)/s] = рэ2[(1-s)/s].

 
Выполнив несложные преобразования, получим

рэ2[(1-s)/s] = Рэм - рэ2 и рэ2= sРэм


т.е. мощность электрических потерь в роторе пропорциональна скольжению.Поэтому работа асинхронного двигателя более экономична при малых скольжениях.

Следует отметить, что в роторе двигателя возникают также и магнитные потери, но ввиду небольшой частоты тока ротора (f2 = f1s) эти потери настолько малы, что ими обычно пренебрегают.

Механическая мощность на валу двигателя Р2 меньше полной механической мощности Р’2 на величину механических рмех и добавочных рд потерь

Р2 = Р’2 - (рмех + рд).

Механические потери в асинхронном двигателе обусловлены трением в подшипниках и трением вращающихся частей о воздух. Добавочные потери вызваны наличием в двигателе полей рассеяния и пульсацией поля в зубцах ротора и статора.

Таким образом, полезная мощность асинхронного двигателя

Р2 = Р1 - ∑р,

 где ∑р – сумма потерь в асинхронном двигателе
∑р = рс1 + рэ1 + рэ2+ рмех + рд.

Коэффициент полезного действия асинхронного двигателя

η = Р2/ Р1 = 1 - ∑р/ Р1.

Благодаря отсутствию коллектора КПД асинхронных двигателей выше, чем у двигателей постоянного тока. В зависимости от величины мощности асинхронных двигателей их КПД при номинальной нагрузке может быть в пределах от 83 до 95% (верхний предел соответствует двигателям большой мощности).

56. Двухклеточные и глубокопазные асинхронные двигатели


Короткозамкнутые асинхронные двигатели с повышенным пусковым моментом

Необходимость обеспечения высоких пусковых моментов без применения пусковых резисторов привела к созданию. двигателей с короткозамкнутым ротором, в которых использовано явление вытеснения тока в стержнях при пуске, когда при s = 1,   /а =* fx.
Как известно, при вытеснении тока в верхнюю часть проводника происходит уменьшение его используемого сечения, что эквивалентно повышению активного сопротивления стержня; кроме того, вытеснение тока приводит к уменьшению индуктивного сопротивления, так как уменьшается общая проводимость пазового магнитного потока рассеяния. Все это создает, как показано в п. 1, условия для получения высокого пускового момента.

паз двух клеточного ротора
Рис. 1. Паз двух клеточного ротора (а) и механические характеристики пусковой и рабочей клеток (6)
1   ...   23   24   25   26   27   28   29   30   31


написать администратору сайта