Главная страница
Навигация по странице:

  • -СООН-СН

  • Продуценты лимонной кислоты

  • 1. ХАРАКТЕРИСТИКА КОНЕЧНОЙ ПРОДУКЦИИ ПРОЕКТИРУЕМОГО ПРОИЗВОДСТВА

  • Химические показатели лимонной кислоты

  • 3. Аппаратурная схема производства и экспликация

  • 4. Изложение технологического процесса производства 4.1 Характеристика сырья и материалов

  • 4.2. Изложение стадий вспомогательных работ(ВР) и основного технологического процесса(ТП). ВР1. Подготовка стерильного воздуха.

  • ВР 2. Подготовка сырья для ферментации.

  • ВР 3.Подготовка пеногасителя

  • ВР 4. Подготовка оборудования к загрузке

  • ТП 1. Выращивание посевного материала в лаборатории.

  • ТП 2. Приготовление питательной среды для ферментёра и посевного аппарата

  • глубинная ферментация лимонной кислоты. Глубинная ферментация лимонной кислоты - StudentLib.com. Соонсн2соон


    Скачать 380.5 Kb.
    НазваниеСоонсн2соон
    Анкорглубинная ферментация лимонной кислоты
    Дата10.05.2022
    Размер380.5 Kb.
    Формат файлаdoc
    Имя файлаГлубинная ферментация лимонной кислоты - StudentLib.com.doc
    ТипДокументы
    #521146
    страница1 из 3
      1   2   3

    ВВЕДЕНИЕ
    Лимонная кислота является основным подкислителем. Ее доля составляет около 75% объема всех производимых подкис лит елей. Особенно широко она используется в производстве безалкоголь­ных напитков, которым придает фруктовые и ягодные запахи и вкус.

    Расширяется сфера применения лимонной кислоты в техничес­ких целях — в химической, текстильной, кожевенной, металлурги­ческой и других отраслях промышленности. Спрос на лимонную кислоту непрерывно растет, но в бывших социалистических стра­нах он удовлетворяется крайне слабо, поэтому в настоящее время организуются новые производственные мощности по выпуску этого ценного продукта.

    Лимонную кислоту производят главным образом путем мик­робного синтеза, который является важной отраслью биотехно­логии. Настоящий отчет посвящен микроорганизмам—продуцен­там лимонной кислоты и современным достижениям биотехнологии в области биосинтеза органических кислот. Описаны теоретичес­кие основы микробного синтеза и механизмы регуляции метабо­лизма органических кислот, их связь с общей физиологией мик­робных клеток. В работе отражен многолетний опыт авторов в промышленном биосинтезе органических кислот. Описываются способы утилизации отходов производства лимонной кислоты с целью получения ценных кормовых продуктов.
    Лимонная кислота НООС-СН2С(ОН) -СООН-СН2-СООН яв­ляется моноокситрикарбоновой кислотой, кристаллизующейся из водных растворов с одной молекулой воды (моногидрат лимонной кислоты) в виде бесцветных прозрачных ромбообразных кристал­лов .Моногидратная лимонная кислота имеет молекуляр­ную массу 210, плотность 1,540 г/см3 и температуру плавления 70—75 СС. Кристаллизационная вода теряется при хранении и ин­тенсивно выделяется при температурах, превышающих 40—50 °С. При 100 °С вода теряется полностью.

    При температуре кристаллизации 36,6 °С и выше выделяется безводная лимонная кислота с молекулярной массой 192 и темпе­ратурой плавления 153 °С. При нагревании до 175 °С лимонная кислота разлагается.

    Лимонная кислота хорошо растворяется в воде (1460 г/л при 20 °С) и умеренно — в этаноле (620 г/л при 25 °С).

    СН2СООН

    |

    НО—С—СООН

    I

    СНзСООН

    Соли лимонной кислоты — цитраты — имеют низкую водораство-римость.

    Лимонная кислота широко распространена в природе. Особенно много ее в незрелых фруктах и ягодах (лимоны, клюква, яблоки, виноград, брусника и др.),
    где лимонная кислота является естест­венным консервирующим агентом.

    Продуценты лимонной кислоты

    После первых публикаций К.Вемера о способностях микромицетов синтезировать органические кислоты, в том числе лимонную, многие микробиологи стали тщательно изучать физиологию грибов и их биосинтетические способности. Многочисленные проверки по­казали явно выраженный потенциал сверхсинтеза лимонной кис­лоты у целого ряда микромицетов, дрожжевых грибов и бактерий. В зависимости от химической природы окисляемого субстрата (свекловичная, тростниковая, цитрусовая или финиковая меласса, сок сахарного тростника, гидрол, гидролизаты крахмала, багасса, сахароза, глюкоза, парафины и много других субстратов) в ка­честве продуцентов лимонной кислоты в более или менее широких масштабах используют микромицеты, принадлежащие к родам Aspergillus, Penicillium, Trichodermaи Botrytis, дрожжевые грибы родов Candida, Delaromycesи Torulopsis, а также бактерии родов Arthrobacterium, Pseudomonasи Micrococcus.

    Детально изучены многочисленные представители аспергиллов, особенно Aspergillusawamori, A.aureus, A.clavatus, A.glaucus, A.ni­ger.

    Самым широко распространенным продуцентом лимонной кис­лоты является микромицет Aspergillusniger, физиология и меха­низм биосинтеза лимонной кислоты которого наиболее изучены.
    В настоящее время для биосинтеза лимонной кислоты в ка­честве основного сырья широко используют мелассу — отходы сахароперерабатывающей промышленности. В зависимости от исход­ного материала различают свекловичную, тростниковую, цитрусо­вую и другие виды мелассы. На международном рынке ежегодна продается 30—35 млн. т этого сырья. В России ежегодный объем производства мелассы составляет 3 млн. т. Хотя меласса в основ­ном используется для кормовых целей, ее широко применяют также в микробиологической промышленности.

    Свекловичная меласса характеризуется высоким содержанием 'Сахаров (46—55%), из которых преобладает сахароза. Меласса имеет сложный и непостоянный химический состав. Она содержит коллоиды, органические кислоты, витамины, белки и свободные .аминокислоты, сложный спектр минеральных веществ (табл. 4.8— 4.10). Из нелетучих органических кислот в мелассе могут при­сутствовать, %: лимонная — 0,01—0,5; глюконовая — 0,5—1,0; яблочная — 0,1—0,5; янтарная — 0,1—0,7.

    Хорошо сбраживаемая меласса должна содержать не более 1% инвертного сахара и не более 1% СаО и 0,06,% сернистого газа (добавляемого в мелассу в качестве консервирующего агента) при общем содержании сухих веществ не менее 75% и Сахаров не менее 46,% при невысоком содержании живых микроорганизмов.

    В золе свекловичной мелассы много калия, магния, железа, но относительно мало фосфора.

    Химический состав мелассы зависит от климатических и поч­венных условий
    выращивания сахарной свеклы, применяемых ми­неральных удобрений, времени уборки урожая (поздние сроки уборки отрицательно влияют на качество мелассы), технологичес­ких нюансов переработки сахарной свеклы, условий транспорти­ровки и хранения мелассы.

    Производство мелассы связано с сезонными доставками сырья. В производстве лимонной кислоты наилучшие результаты дает зрелая, выдержанная меласса. Важное значение имеют длитель­ность хранения мелассы и наличие герметически закрытых ем­костей — мелассохранилищ с пневматическим перемешиванием (для предотвращения расслоения), насосами, устройствами для подачи и забора мелассы из разных горизонтальных хранилищ.

    В последнее десятилетие качество мелассы ухудшается под влиянием ряда дополнительных факторов, связанных с техничес­ким прогрессом . Широко применяемые в сельском хозяйстве ядохимикаты и минеральные удобрения могут оставлять опреде­ленные отрицательные следы в сельскохозяйственной продукции, в частности в мелассе, где обнаружены инсектициды, например фосфорорганический инсектицид малатилон (до 90 мг в 1 кг ме­лассы), оказывающий ингибирующее влияние на биосинтез лимон­ной кислоты .

    В мелассе установлено присутствие некоторых фунгицидов (трилон, мертрилан и др.). Данные о влиянии фунгицидов на биосинтез лимонной кислоты неоднозначны. Некоторые авторы ут­верждают, что ряд фунгицидов подавляет активность ферментов изоцитрат- и сукцинатдегидрогеназы и тем самым способствует биосинтезу лимонной кислоты, во всяком случае у дикорастующих культур Aspergillusniger. По данным других авторов, фунги­циды отрицательно влияют на ацидогенез.

    Обнаружено угнетение синтеза белка в клетках Aspergillusnigerпод действием ртутьорганического фунгицида мертрилана. В результате его воздействия на ферменты ЦТК (в частности на малат-, изоцитрат- и сукцинатдегидрогеназы) резко понижаются интенсивность дыхания клеток и активность терминальных оксидо-редуктаз, особенно цитохромоксидазы. Фунгицид трилан (4,5,6-трихлорбензоксазолидон) также отрицательно влияет на метабо­лизм микромицета Aspergillusniger, по механизм его воздействия другой .

    Все исследованные фунгициды подавляют интенсивность дыхания, тормозят синтез белка, нарушают проницаемость цитоплазматических мембран .

    В мелассе нередко обнаруживается присутствие детергентов.Их влияние на микроорганизмы изучено слабо. Установлено изменение проницаемости клеточной мембраны Aspergillusnigerи как следствие — повышенная гидроксилазная активность культуры.

    Способ культивирования

    Успехи глубинной ферментации в производстве антибиотиков побудили производителей лимонной кислоты искать пути глубин­ного культивирования ее продуцентов. В СССР первой глубинное культивирование продуцентов лимонной кислоты освоила группа исследователей под руководством Г. И. Журавского в 50-е гг., при­меняя синтетические сахарозные среды и специально
    селекциони­рованный для глубинного культивирования штамм Aspergillusni­ger{. В качестве сырья для глубинной ферментации лимонной кислоты может быть использован широкий набор природных суб­стратов: меласса, глюкоза, сахароза, жидкие парафины и другие источники углерода .

    Технология глубинного культивирования продуцентов лимонной кислоты представляет собой явно выраженный двухступенчатый процесс. Первая ступень включает выращивание посевного мате­риала из конидиоспор в посевной среде (на качалке и в посевном аппарате) при 32—33 °С в условиях хорошей аэрации (0,8—1,0 объ­ема воздуха на 1 объем среды в минуту) и при непрерывном пе­ремешивании среды. Продолжительность культивирования на ста­дии выращивания посевного материала — 2 сут (1 сут — на ка­чалке, 1 — на посевном аппарате).

    Сказанное принципиально не исключает непосредственного применения конидиоспор в качестве посевного материала для ос-

    новной ферментации, однако это существенно удлиняет цикл фер­ментации: с 7—8 до 12—13 сут .

    Основную ферментацию в глубинных условиях осуществляют в производственном биореакторе при коэффициенте его заполнения 0,75—0,80 и количестве посевного материала 5—8% от объема ферментируемой среды. Начальная концентрация Сахаров — 10— 14%, часто применяют подкормку свежей средой, особенно в слу­чаях применения мелассных сред . Регуляции рН среды не требуется, но поскольку лимонная кислота очень коррозионна и для ферментационного оборудования необходима устойчивая к кор­розии сталь, то для смягчения коррозионное практикуют подщелачивание ферментируемого субстрата до рН 3,8—4,2.

    Процесс ферментации имеет черты двух фаз, или стадий: фор­мирования биомассы и кислотообразования.

    Для фазы роста биомассы характерно объединение молодого мицелия в шарообразные агломераты, формирование которых про­должается до 70—80 ч ферментации. Некоторая часть гиф остается в свободном виде.

    Во время интенсивного роста потребность продуцента в моле­кулярном кислороде составляет до 1 кг па каждый кубометр фер­ментируемого субстрата в час. В фазе биосинтеза лимонной кислоты потребность в кислороде в некоторой степени снижается и состав­ляет 0,5—0,6 кг 023-ч. Для обеспечения массопередачи кисло­рода в ферментируемый субстрат вводится стерильный воздух в количестве 0,8—1,0 объема на 1 объем среды в минуту, одновре­менно с помощью мешалки создается циркуляция среды со ско­ростью, соответствующей 1,2—1,5 м/с вдоль стенки ферментатора. Насыщение среды кислородом в начальной фазе ферментации должно составлять 20—25,% от полного насыщения, в фазе био­синтеза лимонной кислоты — 10—15,%. Для обеспечения массооб-меиа молекулярного кислорода необходим расход электроэнергии в количестве 1,8—2,2 кВт на 1 м3 среды.

    Температурные режимы в ферментируемом субстрате дифферен­цированы: в фазе роста биомассы — 32—33 °С, в фазе кислотообра­зования — 30—31 °С.

    В зависимости от особенностей используемого мутанта Asper­gillusnigerприменяют разные варианты технологических режимов глубинной технологии.

    1. ХАРАКТЕРИСТИКА КОНЕЧНОЙ ПРОДУКЦИИ ПРОЕКТИРУЕМОГО ПРОИЗВОДСТВА
    1.Техническое наименование продукта – лимонная кислота (чистота 99,9%).

    2. Лимонная кислота будет выпускаться в соответствии с требованиями ГОСТ 908—79.

    3.Лимонную кислоту получают из культуральной жидкости при глубинном культивировании микроскопического гриба Aspergillus niger с последующим отделением биомассы.


    Химические показатели лимонной кислоты







    Нормы для сортов

    Показатели













    экстра

    высший

    первый

    Массовая доля лимонной кислоты в







    пересчете на моногидрат, %







    не менее

    99,5

    99,5 99,5

    не более

    101,0

    Не нормируется

    Цвет, единицы показателя цветности

    4

    6 10

    раствора йодной шкалы, не более







    Массовая доля, %, не более







    золы

    0,07

    0,10 0,35

    свободной серной кислоты

    0,01

    0,01 0,03

    мышьяка

    0,00007

    0,00007 0,00007

    Проба







    на свинец, медь, цинк, олово с се-

    Выдерживает анализ

    роводородом







    на оксалаты с ацетатом кальция




    То же

    на барий с серной кислотой




    »

    на ферроцианиды с хлорным железом

    Выдерживает

    »




    анализ

    Не нормируется

    на сульфаты с хлоридом бария







    Массовая доля сульфатной золы, %,

    0,1

    То же

    не более







    Проба на легкообугливающиеся ве-

    Выдерживает ана

    лиз »

    щества с серной кислотой







    Проба на железо с 1,10-фенантроли-

    То же

    »

    яом









    Лимонная кислота по качеству должна соответ­ствовать показателям, предусмотренным ГОСТ 908—79 . Это должны быть бесцветные кристаллы или белый порошок, без "комков, для кислоты I сорта допускается желтоватый оттенок, вкус кислый, без постороннего привкуса, 2%-ный раствор кислоты в дистиллированной воде должен не иметь запаха, быть прозрач­ным и не содержать механических примесей, структура —сыпу­чая, сухая, наощупь не липкая, без посторонних примесей.

    За рубежом лимонную кислоту классифицируют по величине кристаллов на ситовых аппаратах. Большое внимание обращают на легкообугливающиеся вещества, дающие окраску при нагрева­нии в течение определенного времени с концентрированной серной кислотой при температуре 90 °С. Они вызываются следами орга­нических соединений — сахара, оксиметилфурфурола, других аль­дегидов и спиртов, за исключением цис- и трансаконитовой, изолимонной, щавелевой, янтарной и олеиновой кислот, эритрита, ксилита и сорбита [93].

    Для удаления легкообугливающихся веществ предложено много способов: выделение цитрата кальция в присутствии 10 % пероксида водорода к коли­честву лимонной кислоты; нагревание до кипения растворов лимонной кислоты после отделения гипса в сочетании с обработкой пероксидом водорода; добавле­ние к раствору лимонной кислоты перед кристаллизацией борной кислоты в количестве 0,1—0,3 % по массе раствора, экстракция фреоном и др.

    ^Наиболее эффективным способом очистки кристаллов лимон­ной кислоты от'всех примесей является перекристаллизация. Ли­монная кислота сорта экстра по всем показателям и нормам соответствует данным Британской фармакопеи 1968 г.

    Лимонная кислота выпускается только в упакованном виде: реализуемая через розничную сеть —в мелкой фасовке массой нетто 10—100 г; предназначенная для предприятий пищевой и других отраслей промышленности — в крупной фасовке массой нетто 10—40 кг. При фасовке допускаются отклонения по массе нетто, не превышающие при массе до 50 г ±4 %, от 50 до ПО г +3 %. При упаковке кислоты в ящики и мешки допускаются отклонения, не превышающие ±0,5 %.

    Мелкая фасовка должна проводиться в пакеты из «пищевой» нестабилизи-рованной полиэтиленовой пленки марки Н, толщиной не менее 0,08 мм; из эти-кетировочной бумаги односторонней гладкости, ламинированной с внутренней стороны полиэтиленом высокого давления или пачки из бумаги марки Е по ГОСТ 7247—73 с внутренним вкладышем из подпергамента марки П-3. Паке­ты и пачки оформляют красочными рисунками и надписями (товарный знак или «аименование предприятия-изготовителя и его подчиненность, наименование про­дукции и ее сорта, дата выработки, масса нетто, цена, обозначение настоящего стандарта). Пакеты и пачки с кислотой должны упаковываться в ящики из гофрированного картона № 13 массой нетто не более 10 кг.
    Крупная фасовка проводится в льно-джуто-кенафные тканевые мешки или льняные продуктовые массой нетто не более 40 кг, в ящики из гофриро­ванного картона. Внутрь мешков или ящиков должны вставляться мешки-вкла­дыши из полиэтиленовой пленки, которые после заполнения кислотой гермети­чески закрывают путем сварки. Допускается завязка увязочным шпагатом из лубяных волокон. Верхние швы тканевых наружных мешков зашивают машин­ным способом льняными нитками или вручную — увязочным шпагатом из лубя­ных волокон.

    При внутригородских перевозках допускается упаковка кислоты в бумаж­ные непропитанные открытые трехслойные мешки с внутренним мешком-вкла­дышем из полиэтиленовой пленки массой нетто не более 25 кг; в ящики из гоф­рированного картона, выстланные подпергаментом марки П-3, полностью по­крывающим всю внутреннюю поверхность тары.

    Транспортную тару маркируют с нанесением манипуляционного знака «Бо­ится сырости».

    На ряде заводов крупная фасовка лимонной кислоты механизирована: ус­тановлены полуавтоматические весы, зашивочные машины и транспортное обо­рудование.

    Фирма American Association of Cereal Chemist Inc. выпускает лимонную кислоту в капсулах, которые защищают другие ингредиенты пищи от кислоты. Капсулы изготовляют трех типов: из частично гидрогенизированного раститель­ного масла, мальтодекстрина и эмульгатора. Первый тип разрушается пои тем­пературе плавления оболочки, второй — при растворении в воде, третий — при нагревании в воде.

    Преимуществом такой формы упаковки лимонной (и Других пищевых кис­лот) является контролируемая скорость освобождения кислоты из капсулы, равномерное распределение кислоты по всему объему без образования комков Пищевые кислоты в капсулах применяют в кулинарии — для увеличения срока хранения пудингов и начинок для пирогов, предотвращая реакцию между кис­лотой и крахмалом во время хранения, для увеличения срока хранения теста и т. д.

    Лимонная кислота в крупной фасовке должна храниться в за­крытом помещении на деревянных стеллажах или поддонах при относительной влажности воздуха не выше 70 %. Гарантийный срок хранения лимонной кислоты — 6 мес со дня изготовления; при упаковке в ящики из гофрированного картона с внутренним вкладышем из подпергамента — 3 мес.

    Для хранения кристаллической кислоты большое значение имеет гигроскопичность. Под гигроскопичностью понимают свой­ство веществ поглощать водяные пары из воздуха независимо от характера связывания ими влаги.

    3. Аппаратурная схема производства и экспликация



    Обозначение

    Наименование

    Количество единиц

    Материал рабочей зоны, способ защиты

    Техническая характеристика

    1

    М

    ПМ
    РС

    ПР
    СК
    ВД

    ТО

    СП
    ПА

    Ф


    ИВФ
    СБ

    БВФ
    СБФ

    2

    Хранилище мелассы

    Промежуточная емкость для мелассы

    Реактор - смеситель

    Промежуточная ёмкость

    Стерилизационная колонка

    Выдерживатель

    Теплообменник

    Сборник питательной среды

    Посевной аппарат

    Ферментёр


    Индивидуальный воздушный фильтр

    Сборник культуральной жидкости

    Барабанный вакуум-фильтр

    Сборник фильтрата


    3

    1

    1

    1
    1
    1

    1

    1
    2

    7


    9

    2
    1
    2

    4

    5


    V=32 м, 31,5 об/мин,H=8300,D=3200mm.

    32 м3

    «Труба в трубе»

    3,Н=3800мм,Д=2000мм,180 об/мин

    50 м3, Н=10900,Д=4000мм,рубашка и змеевик.
    ДК-1.4, 0.058м3
    25м3, Н=3800;Д=3000мм
    S=3м2, 2420х2550х2200

    25м3, Н=3500;Д=3000м

    4. Изложение технологического процесса производства
    4.1 Характеристика сырья и материалов


    1. Меласса в коцентрации 5% по сахару – используется для ферментации и посевной среды

    2. NH 4Cl концентрация 1% - используется для ферментации и посевной среды

    3. КН2РО4 конц. 1% - используется для ферментации и посевной среды

    4. ZnSO4 конц. 1% - используется для ферментации и посевной среды

    5. K4[Fe(CN)6] конц. 10% - используется для ферментации и посевной среды

    6. Пеногаситель – олеиновая кислота – используется для пеногашения

    7. Вода. Показатели для проверки - ХПК, БПК


    4.2. Изложение стадий вспомогательных работ(ВР) и основного технологического процесса(ТП).

    ВР1. Подготовка стерильного воздуха.
    В процессе культивирования в посевном аппарате и ферментере растущая культура аэрируется кондиционированным стерильным воздухом под избыточным давлением 0,01 – 0,03 мПа для удовлетворения биологической потребности м/о и отвода продуктов их жизнедеятельности. Забор атмосферного воздуха происходит на высоте 5 метров над коньком здания. Подготовка воздуха для аэрации проводится следующим образом:

    -очистка воздуха от грубых механических взвесей (висциновые фильтры)

    -предварительное кондиционирование воздуха до нужной температуры

    -подача воздуха в компрессор

    -тонкая очистка воздуха от микроорганизмов (головной фильтр)

    -окончательная очистка в индивидуальном фильтре.

    На стадии предварительной очистки воздуха удаляется основная масса крупных частиц пыли диаметром 5-10мкм. В качестве фильтров предварительной очистки используют масляные фильтры.

    Для сжатия и нагнетания воздуха используют турбокомпрессоры, в которых сжатие воздуха происходит под действием центробежной силы. Сжатие воздуха сопровождается его нагреванием до 2200С. Поэтому после компрессоров воздух поступает в холодильник. Чтобы удалить из воздуха излишнюю влагу, его необходимо охлаждать до температуры ниже точки росы.

    Далее воздух поступает в головной фильтр КБ ВНИИФСа, представляющий собой стальной цилиндр со сферическим днищем и разъемной крышкой. Внутри него расположены сетки, между которыми уложены фильтрующий материал - стекловолокно ЦФД. Стерилизуется фильтр паром давлением 0,2 МПа при 133°С в течении 3 часов.

    Перебивку головного фильтра ведут – 1 раз в 2 – 3 месяца

    Далее очищенный воздух поступает в индивидуальные фильтры тонкой очистки и подается для аэрирования растущей культуры в посевном аппарате и ферментере. Для ферментера используется фильтр ЛАИК СП6/ 15 , посевного аппарата - фильтр ФТО – 60 .Фильтрующий материал, используемый для фильтров тонкой очистки, имеет коэффициент проскока 1х109 %, что обеспечивает требуемую стерилизацию воздуха, необходимого для развития микроорганизмов. Стерилизуют фильтры паром.

    Перебивку фильтров ведут: индивидуальных – 1 раз в месяц.

    ВР 2. Подготовка сырья для ферментации.

    Все жидкие компоненты среды поступают из транспорта в специальные сборники и хранятся на складе при 15 С. Всё сырьё при поступлении в цех проходит тщательную проверку и очистку.

    ВР 3.Подготовка пеногасителя

    Пpи выpaщивaнии кyльтypы нa cpeдax, oбpaзyющиx пeнy в пpoцecce фepмeнтaции для ee гaшeния в aппapaты пoдaeтcя жидкий пeнoгacитeль.

    Для пoлyчeния 0,05%-нoй эмyльcии пeнoгacитeля, в емкость вносят его концетрат, зaтeм paзбaвляют eгo дo необходимой концентрации.

    Эмyльcию пеногасителя cтepилизyют в специальном аппарате периодического действия при темпepaтype 123±2°C в тeчeниe 30 минyт во избежание внесения с ним инфекции в среду. Пocлe cтepилизaции пeнoгacитeль oxлаждают в тoм жe aппapaтe дo тeмпepaтypы 30-32°C, зaтeм подают через дозатор (Д1) в ферментер и посевной аппарат.

    ВР 4. Подготовка оборудования к загрузке

    Подготовка установок к работе заключается в их промывке и пропарке. При мойке установок сначала заполняют водопроводной водой (или раствором каустической соды) основную емкость, затем циркуляционный контур. После запуска насоса промывная жидкость начинает циркулировать по контуру. Далее устанавливают необходимую величину возврата промывной жидкости из основного контура циркуляции промыв­ного раствора в циркуляционную емкость. Подпитывая систему водопроводной водой, ведут промывку до появления чистой воды на выходе в канализацию перед аппаратом разделения. Основные показатели процесса мойки:

    - температура водопроводной воды - 40°С

    - продолжительность процесса - 30 мин

    По окончании процесса выключают насос и сливают остатки воды из установки. Далее можно осуществить пропаривание аппарата путем подачи пара с давлением 0,3-0,4 МПа и отвода конденсата в канализацию. После подготовительных мероприятий необходимо произвести анализ воздуха внутри аппарата при помощи газоанализато­ров. Концентрация СО2 и других летучих продуктов не должна превышать допустимую норму.

    Перед проведением работ по очистке и осмотру оборудования все аппараты долж­ны быть надежно (с помощью заглушек) отключены от паровых и прочих коммуника­ций.

    ТП 1. Выращивание посевного материала в лаборатории.
    ТП 1.1..Приготовление питательной среды

    ТП 1.2 Стерилизация питательной среды

    Проводится в автоклаве при температуре 120оС .

    ТП 1.3 Засев исходной культурой

    Исходная культура засеивается в пробирку, потом выращивание ведут в колбах и кюветах.
    ТП 2. Приготовление питательной среды для ферментёра и посевного аппарата

    ТП 2.1 Взвешивание мелассы
    ТП 2.2 Приготовление питательной среды

    Пoдгoтoвкy питaтeльнoй cpeды пpoизвoдят в реакторе (РС) путем смешивания ее компонентов. Реактор - этo цилиндрическая eмкocть, изгoтoвлeнная из нepжaвeющeй cтaли или из мaтepиaлoв c aнтикoppoзийным пoкpытиeм зaкpытoгo типa c мeшaлкoй и бapбoтaжным ycтpoйcтвoм для вoздyxa, пapa. B кpышкe тaкoгo cмecитeля пpeдycмaтpивaeтcя нecкoлькo ввoдoв, пpeднaзнaчeнныx для пoдaчи внyтpь реактора кoмпoнeнтoв cpeды, вoды.B нижнeй чacти eмкocти ecть oтвoдящий пaтpyбoк, чepeз кoтopый yдaляeтcя из aппapaтa пoдгoтoвлeннaя cpeдa и пoдaeтcя в пос.аппарат.
      1   2   3


    написать администратору сайта