Главная страница

Комплексные системы защиты информации. Создание комплексной системы защиты информации


Скачать 4.33 Mb.
НазваниеСоздание комплексной системы защиты информации
АнкорКомплексные системы защиты информации
Дата11.01.2023
Размер4.33 Mb.
Формат файлаrtf
Имя файла864044.rtf
ТипКурсовой проект
#881896
страница5 из 6
1   2   3   4   5   6

5.5 Защита по виброакустическому каналу утечки информации



Метод съема информации по виброакустическому каналу относится к так называемым беззаходовым методам, и это является важным его преимуществом. Обнаружить аппаратуру такого съема информации крайне трудно, так как она устанавливается за пределами контролируемого помещения, а в ряде случаев существенно удалена от него.

Кратко о физическом принципе, который лежит в основе этого метода. Речь, вызывающая акустические сигналы, представляет собой механические колебания воздушной среды. Попадая на твердые поверхности(стены, перегородки), они преобразуются в структурные вибрационные сигналы, которые, оставаясь по своей природе механическими, распространяется по строительным конструкциям здания. Можно выделить следующие типовые конструкции, по которым передаются речевые сигналы:

  • В акустическом сигнале это – несущие стены зданий, перегородки, перекрытия зданий, окна, двери, вентиляционные воздуховоды;

  • В вибрационном канале это – стены и перегородки, перекрытия, оконные рамы, дверные коробки, трубопроводы, короба вентиляции.

Если акустические датчики установлены на этих конструкциях за пределами помещения, это дает возможность принять речевые сигналы и проконтролировать разговоры внутри него. При этом необязательно скрытно проникать в помещение – достаточно приблизится к нему снаружи. Установить датчик можно и дистанционным способом- с помощью специальных выстреливающих устройств. Иногда используют лазерные устройства и направленные микрофоны. Действие лазерных устройств основано на принципе снятия вибрации (речевых сигналов) с оконного стекла, а направленные микрофоны снимают речевую информацию по акустическому каналу.

Для обратного преобразования механических колебаний в акустический сигнал служат контактные микрофоны, известные под названием стетоскопы. Электронные стетоскопы сначала преобразуют механические колебания в электрический сигнал, который затем усиливается и уже тогда преобразуется в акустический.

Итак, вибрационным каналом утечки информации здесь уже является не воздух, а другая среда распространения акустического сигнала. Такие каналы возникают при падении первичной акустической волны в воздухе на другую среду и дальнейшем распространении ее в новой среде. На практике – это стены, пол, потолок, двери и косяки, стекла, оконные рамы и коробки, инженерные коммуникации проходящие или выходящие из помещения.

Предотвращение утечки информации по этим каналам сводится, как и в случае с акустическими каналами, к двум направлениям:

  1. Максимально ослабить акустический сигнал от источника звука, попадающий в другую среду распространения, где его могут перехватить. Заставить акустическую волну пройти сначала среду с высоким затуханием, например. Это означает, что отделка стен звукопоглощающими материалами предпочтительнее, чем простая оклейка обоями. Тяжелые портьеры на окнах значительно ослабляют акустический сигнал, попадающий на стекла. Красивые дубовые сплошные одинарные двери явно проигрывают по этому параметру двойным, обитым дерматином.

  2. Создать в "опасной" среде распространения сильный помеховый сигнал, который невозможно отфильтровать от полезного. Для зашумления используют генераторы белого шума, к которым подсоединяют специальные излучатели, устанавливаемые на стенах, стеклах, рамах, косяках, трубах отопления и т.д.



5.6 Звукоизоляция помещений



Направлена на локализацию источников акустических сигналов внутри них и проводится с целью исключения перехвата акустической (речевой) информации по прямому акустическому (через щели, окна, двери, технологические проемы, вентиляционные каналы и т.д.) и вибрационному (через ограждающие конструкции, трубы водо-, тепло- и газоснабжения, канализации и т.д.) каналам.

Основное требование к звукоизоляции помещений заключается в том, чтобы за его пределами отношение акустический сигнал/шум не превышало некоторого допустимого значения, исключающего выделение речевого сигнала на фоне естественных шумов средством разведки. Поэтому к помещениям, в которых проводятся закрытые мероприятия, предъявляются определенные требования по звукоизоляции.

Одним из наиболее слабых звукоизолирующих элементов ограждающих конструкций выделенных помещений являются двери и окна.

На защищаемом объекте конструкция окон – с повышенным звукопоглощением на основе стеклопакетов с герметизацией воздушного промежутка между стеклами и создание в нем вакуума.

Необходимо отметить, что увеличение числа стекол не всегда приводит к увеличению звукоизоляции в диапазоне частот речевого сигнала вследствие резонансных явлений в воздушных промежутках и эффекта волнового совпадения.

Для повышения звукоизоляции в помещениях применяют акустические экраны, устанавливаемые на пути распространения звука на наиболее опасных (с точки зрения разведки) направлениях.

Действие акустических экранов основано на отражении звуковых волн и образовании за экраном звуковых теней. С учетом дифракции эффективность экрана повышается с увеличением соотношения размеров экрана и длины акустической волны. Размеры эффективных экранов превышают более чем в 2-3 раза длину волны.

Применение акустического экранирования целесообразно при временном использовании помещения для защиты акустической информации. Наиболее часто применяются складные акустические экраны, используемые для дополнительной звукоизоляции дверей, окон, технологических проемов, систем кондиционирования, проточной вентиляции и других элементов ограждающих конструкции, имеющих звукоизоляцию, не удовлетворяющую действующим нормам.

Для повышения звукоизоляции помещений также применяют звукопоглощающие материалы.

Звукопоглощение обеспечивается путем преобразования кинетической энергии акустической волны в тепловую энергию в звукопоглощающем материале. Звукопоглощающие свойства материалов оцениваются коэффициентом звукопоглощения, определяемым отношением энергии звуковых волн, поглощенной в материале, к падающей на поверхность материала и проникающей (неотраженной) в звукопоглощающий материал.

Применение звукопоглощающих материалов при защите акустической информации имеет некоторые особенности по сравнению с звукоизоляцией. Одной из особенностей является необходимость создания непосредственно в помещении акустических условий для обеспечения разборчивости речи в различных его зонах. Таким условием является прежде всего обеспечение оптимального соотношения прямого и отраженного от ограждений акустических сигналов. Чрезмерное звукопоглощение приводит к ухудшению уровня сигнала в различных точках помещения, а большое время реверберации – к ухудшению разборчивости в результате наложения различных звуков.

Обеспечение рациональных значений рассмотренных условий определяется как общим количеством звукопоглощающих материалов в помещении, так и распределением звукопоглощающих материалов по ограждающим конструкциям с учетом конфигурации и геометрических размеров помещений.
1   2   3   4   5   6


написать администратору сайта