ИТМЗИ Л.8 (20-14) Закладки Обнаружение. Способы и средства предотвращения утечки информации с помощью закладных подслушивающих устройств
Скачать 3.86 Mb.
|
Знание частоты позволяет оператору грубо классифицировать принимаемый радиосигнал по возможным его источникам (радио- или телевизионное вещание, служебная связь, сотовая радиотелефонная связь и т. д) и повысить оперативность «чистки» помещения. Бытовые приемники как средства обнаружения закладных устройств имеют существенно более высокую чувствительность чем индикаторы поля и частотомеры и позволяют уверенно принимать радиосигнал закладки, если только его частота соответствует диапазону частот радиоприемника. Диапазоны частот бытовых радиоприемников стандартизированы и составляют: для России и стран СНГ - 65.8-74 Мгц (УКВ1) и 100-108 Мгц (УКВ2), в соответствии с Международным регламентом радиосвязи -41-68 Мгц (УКВ1) и 87.5-108 Мгц (УКВ2). Большинство современных бытовых радиоприемников выпускаются в так называемом расширенном диапазоне 65-108 Мгц. Доля закладок с частотами излучений, попадающих в эти диапазоны, мала и постоянно убывает. Учитывая это, некоторые бытовые радиоприемники оснащаются встроенными или подключаемыми конверторами (преобразователями) на диапазон излучений радиозакладок до 450-480 МГц. К таким приемникам относятся, например, АЕ 1490, Sony CFM-145. У них имеется дополнительный диапазон рабочих частот 460-480 МГц, чувствительность их составляет 2-3 мкВ, что обеспечивает прием высокочастотных ЧМ-сигналов радиозакладок. Наглядное представление о загрузке радиодиапазона, что облегчает поиск радиозакладных устройств, обеспечивают анализаторы спектра. Широкий диапазон частот имеют анализаторы спектра производства фирмы Rohde&Schwarz ZWOB2 (100 кГц-1.6 кГц), ZWOB6 (100 кГц-2.7 ГГц), ZWOB4 (100 кГц-2.3 ГГц), ZRMD (10 МГц-18 ГГц). Несколько меньшими возможностями обладают анализаторы спектра производства стран СНГ: СК4-61 (100 МГц-15 ГГц), С4-42 (40 МГц-17 ГГц), СК4-59 (10 кГц-0.3 ГГц), С4-47 (100 МГц- 39.6 ГГц), СК4-83 (10 Гц- 0.3 Гц), С4-9 (50 МГц- 1.4 МГц). Все более широко для поиска закладных устройств применяются сканирующие радиоприемники. Эти приемники имеют высокие электрические параметры в широком диапазоне частот настройки, перекрывающем частоты радиоизлучений имеющихся на рынке закладок. Сканирующие приемники автоматически последовательно настраиваются на частоты радиосигналов во всем диапазоне. Оператор, прослушивая звуковые сигналы на выходе приемника на каждой из частот, принимает решение о продолжении или прекращении поиска. Для продолжения поиска он нажимает соответствующую кнопку, подавая устройству управления приемника команду о перестройке на следующую частоту. В сканирующих приемниках с памятью в ней запоминаются частоты радиосигналов, которые не интересуют оператора, что ускоряет процесс последующего поиска. Очевидно, что для того чтобы оператор мог обнаружить радиосигнал закладки, она должна передавать узнаваемый акустический сигнал. Для этого при поиске закладок с помощью бытовых и сканирующих радиоприемников необходимо в обследуемом помещении излучать акустический сигнал. Акустический сигнал, кроме того, «провоцирует» закладные устройства, автоматически включаемые от голосов разговаривающих. В условиях большого и постоянно расширяющего диапазона частот излучений радиозакладных устройств его последовательный просмотр даже с помощью сканирующих приемников занимает несколько часов. В результате длительного поиска оператор утомляется и повышается вероятность пропуска им излучения закладки. Для оперативного поиска закладок применяются специальные приемники, которые содержат кроме сканирующего приемника излучатель акустического тестового сигнала и микропроцессор. Излучатель акустического сигнала имитирует источник акустической информации. Микропроцессор выявляет радиосигналы, на которые настраивается сканирующий приемник, по критерию «свой - чужой» и быстро обнаруживает радиосигнал закладки, если таковой имеется. Например, приемник РК 855-S генерирует звуковой сигнал на частоте 2.1 кГц. После обнаружения «своего» сигнала он последовательно автоматически проверяет его 4 раза, после чего подается сигнал оператору об обнаружении закладки. Сканирование всего диапазона частот занимает около 3-4 минут. Чтобы избежать перегрузки чувствительных микрофонов и надежно обнаруживать радиозакладки различных типов, громкость тестового акустического сигнала ступенчато меняется: 1.5-2 мин. он излучается на полной громкости, затем то же время на половинной мощности. Аппаратура размещается в портфеле типа «дипломат», весит 4.9 кг. Дальнейшее развитие специальных приемников привело к появлению на рынке автоматизированных программно-аппаратных комплексов для поиска средств негласного съема акустической информации. Типовой комплекс включает: - сканирующий радиоприемник с широкополосными антеннами; - коммутатор антенн для комплексов, контролирующих несколько помещений; - компьютер типа Notebook или микропроцессор; - специальное математическое обеспечение комплекса; - контролер ввода информации с выхода радиоприемника в компьютер и формирования тестового сигнала; - преобразователь спектра; - акустический коррелятор; - блок питания. Комплекс при минимальном участии оператора определяет и запоминает уровни и частоты радиосигналов в контролируемом помещении, выявляет в результате корреляционной обработки спектрограмм вновь появившиеся излучения, с использованием тестового акустического сигнала распознает скрытно установленные в помещении радиомикрофоны и определяет их координаты. Возможности комплексов расширяют также включением в их состав блока контроля проводных линий, позволяющего обнаруживать подслушивающие устройства, подключенные к проводам кабелей. Характеристики комплексов приведены в табл. .3. Таблица .3.
С целью сокращения времени просмотра диапазона частот до нескольких минут анализ сигналов в перспективных комплексах (АРК-ДЗ, АРК-ПК, Крона-5 и др.) проводится на основе быстрого преобразования Фурье. Оригинальная портативная автоматизированная аппаратура радио- и радиотехнического контроля «Барс» создана 5 ЦНИИ МО РФ и ВНИИС. Она обеспечивает: обзор в полосе 30 МГц-30 ГГц, пеленгацию источников радиоизлучений с точностью 2-8 град., измерение характеристик радиосигнала (частоты и мощности сигнала, длительности и периода повторения импульсов, напряженности поля), распознавание типа РЭС с вероятностью не менее 0.9, формирование банка данных с не менее 100 эталонами. Аппаратура «Барс» состоит из антенно-фидерного устройства, сменных высокочастотных блоков, блоков быстрого частотно-временного и точного анализа, обработки данных, управления и контроля, а также блока питания. Принцип построения аппаратной части и программного обеспечения позволяет адаптировать аппаратуру для конкретных условий. Создание и применение автоматизированных комплексов для непрерывного радиомониторинга помещений с конфиденциальной информацией является наиболее эффективным направлением развития средств для комплексной защиты информации от утечки по радиоэлектронному каналу. Такое утверждение основывается на следующих предпосылках: - при непрерывном контроле накапливается большой объем информации об электромагнитной обстановке в защищаемом помещении, что облегчает и ускоряет процесс обнаружения новых источников излучения; - выявляются не только непрерывно излучающие или включаемые по акустическому сигналу закладки, но и радиоизлучения дистанционно управляемых закладок в период их активной работы, т. е. создаются предпосылки для борьбы с закладными устройствами в реальном масштабе времени; - выявляются информативные побочные излучения различных радиоэлектронных средств, для обнаружения которых в виду большей неопределенности их проявления и малой мощности излучений требуется более тщательный анализ радиообстановки в помещении. Возможности автоматизированных комплексов определяются не столько техническими параметрами аппаратуры (большинство комплексов имеют близкие параметры, так как комплектуются в основном однотипными радиоприемниками и ПЭВМ), сколько программным обеспечением. Большими возможностями обладает программное обеспечение фирмы «Нелк» — программные комплексы SedifPlus, SedifPro, Filin, Sedif Scout.. Универсальная базовая программа Filin позволяет накапливать данные о радиоэлектронной обстановке, анализировать загрузку и спектральный состав радиосигналов в диапазоне частот радиоприемника, выявлять информативные электромагнитные излучения от любых РЭС, оценивать эффективность использования радиотехнических средств зашиты информации и решать другие задачи. Дальнейшее развитие автоматизированных комплексов предусматривает: - расширение видов обнаруживаемых закладных устройств; - создание и включение в состав программного обеспечения комплекса базы данных о закладных устройствах с информационными портретами излучаемых сигналов для их автоматического обнаружения и распознавания; - разработка на базе программно-аппаратных средств комплексов экспертной системы по обнаружению источников утечки информации в радиоэлектронном канале . 6. Принципы контроля телефонных линий и цепей электропитания Учитывая повсеместное распространение телефонов как средств коммуникаций и особый интерес злоумышленников к подслушиванию телефонных разговоров, при обеспечении защиты информации большое внимание уделяется способам и средствам контроля телефонных линий. Способы контроля телефонных линий основаны на том, что любое подключение к ним вызывает изменение электрических параметров линий: напряжения и тока в линии, значений емкости и индуктивности линии, активного и реактивного сопротивления. В зависимости от способа подключения подслушивающего устройства к телефонной линии (последовательного- в разрыв провода телефонного кабеля или параллельного) влияние подключаемого подслушивающего устройства может существенно отличаться. Так как закладное устройство использует энергию телефонной линии, величина отбора мощности закладкой из телефонной линии зависит от мощности передатчика закладки и его коэффициента полезного действия. Наилучшие возможности по выявлению этих отклонений существуют при опущенной трубке Телефонного аппарата. Это обусловлено тем, что в этом состоянии в телефонную линию подается постоянное напряжение 60+10% В (для отечественных телефонных линий) и 25-36 В (для зарубежных АТС). При поднятии трубки в линию поступают от АТС дискретный сигнал, преобразуемый в телефонной трубке в длинный гудок, а напряжение в линии уменьшается до 12В [56]. Для контроля телефонных линий применяются следующие устройства: - устройства оповещения световым и звуковым сигналом об уменьшении напряжения в телефонной линии, вызванном несанкционированным подключением средств подслушивания к телефонной линии; - измерители характеристик телефонных линий (напряжения, тока, емкости, сопротивления и др.), при отклонении от которых формируется сигнал тревоги; - «кабельные радары», позволяющие измерять неоднородности телефонной линии и определять расстояние до неоднородности (асимметрии постоянному току в местах подключения подслушивающих устройств, обрыва, короткого замыкания и др.). Простейшее устройство контроля телефонных линий представляет собой измеритель напряжения с индикацией изменения ого значения от номинального, которое фиксируется оператором в режиме настройки вращением регулятора на лицевой панели устройства. Предполагается, что при установке номинального напряжения к телефонной линии подслушивающее устройство не подключено. Например, анализатор проводных линий АПЛ-1 («Иней», Ассоциация «Конфидент») позволяет обнаруживать подключение подслушивающих устройств, включенных последовательно и имеющих сопротивление не менее 5 Ом, и подключенных параллельно с сопротивлением не более 1.5 мОм [67]. На некоторых подобных устройствах, например, ST1, устанавливается стрелочный измеритель напряжения (вольтметр), в других (АТ-23, «Атолл», АТЛ-2 и др.) предусмотрено цифровое отображение значений напряжения и тока на ЖК-дисплее. Как правило, подобные устройства содержат также фильтры для защиты от прослушивания за счет «микрофонного эффекта» в элементах телефонного аппарата и высокочастотное навязывания. Но устройства контроля телефонной сети по изменению напряжения или тока в ней не обеспечивают надежного обнаружения подключаемых параллельно к линии современных средств подслушивания с входным сопротивлением более единиц МОм. Повышение реальной чувствительности устройств контроля ограничено нестабильностью параметров линии, колебаниями напряжения источников электропитания на АТС, помехами в линии. Для снижения вероятности ложных тревог в более сложных подобных устройствах увеличивают количество измеряемых характеристик линии, предусматривают возможность накопления и статистической обработки результатов измерений в течение достаточно длительного времени как контролируемой линии, так и близко расположенных. Например, портативный анализатор ССТО-1000 фирмы CCS Commucation Control позволяет проводить 6 типов контрольных проверок телефонной линии и может быть использован для одновременной проверки 25 телефонных пар, а анализатор АТЛ-2 информирует о размыкании телефонной линии на время более 20 секунд, которое возникает при последовательном подключении к ней подслушивающего устройства. Так как любое физическое подключение к кабелю телефонной линии создает в ней неоднородность, от которой отражается посылаемый в линию сигнал, то по характеру отражения и времени запаздывания отраженного сигнала оценивают вид неоднородности и рассчитывают длину участка линии до неоднородности (места подключения). В приборах АПЛ-1 и АТ-2 («Амулет», г. Москва) характер схемы подслушивающего устройства оценивается по фигуре Лиссажу, вид которой определяется сдвигом фаз между напряжением и током сигнала, подаваемого на вертикальные и горизонтальные пластины электронно-лучевой трубки. Для выявления неоднородностей применяют также испытатели кабельных линий Р5-А, Р5-5, Р5-8, Р5-9, Р5-10, Р5-13 [85]. Средствами и программным обеспечением для обнаружения и анализа сигналов закладных устройств в проводных линиях оснащаются также перспективные автоматизированные комплексы. Например, в мобильном автоматизированном комплексе «Крона-5» («Нелк») установлен многофункциональный конвертор, позволяющий обнаруживать утечку акустической информации по электросети, телефонным и другим проводным линиям в диапазоне частот 0.01-5 Мгц, а также по инфракрасному каналу. Наиболее рациональным вариантом является совмещение в одном приборе функции обнаружения несанкционированного подключения к телефонной линии и противодействия подслушиванию. Активное противодействие осуществляется путем линейного зашумления телефонной линии. 7. Технические средства подавления сигналов закладных устройств Другую группу средств активной борьбы с закладками образуют генераторы помех. Классификация этих средств приведена на рис. 4. Выходы генератора линейного зашумления соединяются с проводами телефонной линии и электросети и в них подаются электрические сигналы, перекрывающие опасные сигналы по спектру и мощности. Генераторы пространственного зашумления повышают уровень электромагнитных помех в помещении и. следовательно, на входе приемника злоумышленника. Для эффективного подавления сигнала закладки уровень помехи в полосе спектра сигнала должен в несколько раз превышать уровень сигнала. Рис. 4. Классификация средств подавления закладок Энергетическое скрытие информации путем подавления (снижения отношения сигнал/шум ниже порогового значения) электрических и радиосигналов позволяет обеспечить превентивную защиту информации, без предварительного обнаружения и локализации закладных устройств. Возможны три способа подавления: - снижение отношения сигнал/шум до безопасных для информации значений путем пространственного и линейного зашумления: - воздействия на закладные устройства радио- и электрическими сигналами, нарушающими заданные режимы работы этих устройств; - воздействия на закладные устройства, вызывающие их разрушение. Для подавления сигналов закладных устройств применяются заградительные и прицельные помехи. Заградительные помехи имеют ширину спектра, перекрывающего частоты излучений подавляющего числа закладных устройств. Характеристики таких генераторов помех приведены в таблице 4 Таблица 4.
Примечание: П - пространственное зашумление, Л - линейное зашумление. Однако подобные генераторы помех эффективно подавляют радиосигналы закладки, если отношение мощности помехи и сигнала закладки в несколько раз выше отношения ширины спектра помехи и сигнала. Это требование обусловлено тем, что мощность помехи «размазывается» по диапазону частот генератора помех, в среднем составляющем около 1000 МГц, и на долю узкополосного сигнала закладки приходится лишь незначительная часть энергии помехи, которой не хватает для эффективного искажения информационных параметров сигнала. Например, одно из устройств активной защиты информации с повышенной выходной мощностью обеспечивает максимальную мощность шума в полосе ЧМ-сигнала (150-200 кГц) порядка 40 мВт при интегральном значении выходной мощности генератора до 20Вт. Но для узкополосного ЧМ-сигнала мощность помехи в полосе сигнала составляет доли и единицы мВт, что недостаточно для подавления сигналов закладки. Учитывая значительную долю на рынке радиозакладок с мощностью излучения порядка 10-20 мВт и тенденцию сужения полосы их кварцованных частот, применение достаточно мощных генераторов помех не гарантирует предотвращение утечки информации. Наращивание мощности заградительной помехи ограничивается требованиями по экологической безопасности и электромагнитной совместимости излучений помех и сигналов радиовещания и связи в зашумляемом пространстве. Проблема электромагнитной совместимости не возникает при линейном зашумлении. Задача подавления сигналов закладок, передаваемых по цепям электропитания, решается простым превышением спектральной плотности помехи над спектральной плотностью сигнала. Для подавления телефонных радиозакладок путем линейного зашумления спектр помехи не должен совпадать со спектром речевого сигнала, иначе помеха будет мешать разговору абонентов. В качестве таких помех применяют аналоговые и дискретные помеховые сигналы, спектр которых выше спектра речевого сигнала. Простейшим дискретным помеховым сигналом является меандр - последовательность прямоугольных импульсов со скважностью 2. Частоты сигналов подбираются такими, чтобы они проходили через селективные цепи микрофонного усилителя и модулятора, но не воспринимались слуховой системой человека. Сигналы-помехи с частотой выше 20 кГц изменяют режимы работы подключенных к телефонной линии закладных устройств, в результате чего изменяется частота и расширяется спектр их излучении. Вследствие этого ухудшается разборчивость принимаемой злоумышленником речи и уменьшается в несколько раз дальность подслушивания. Воздействие помехи на параллельно подключенное к телефонной линии закладное устройство проявляется в основном в изменении частоты излучения передатчика, в результате чего приемник, настроенный на номинальную частоту передатчика закладки, не сможет принять сигнал. Например, устройство защиты телефонных линий УЗТ-02 фирмы «Нелк» генерирует помеховый сигнал с максимальной амплитудой 35 В, который, воздействуя на элементы электронной схемы телефонной закладки, приводит к «размыванию» спектра излучаемого сигнала и снижению соотношения сигнал/шум на входе приемника злоумышленника. Воздействие помех нарушает также работу устройств автоматической регулировки уровня записи и автоматического включения диктофона голосом. Основные характеристики устройств активной защиты телефонных линий приведены в табл. 5. Таблица 5.
Примечание. В графе «Вид подавления»: 1 - снижение отношения сигнал/шум на входе подслушивающего устройства: 2 - размывание спектра передатчика радиозакладки: 3 - отключение радиозакладки: 4 - сдвиг частоты излучения радиозакладки: 5 - блокировка автопуска записывающего устройства: 6 - защита от ВЧ-навязывания: 7 - гальваническая развязка телефонного аппарата от линии связи: *) - полное подавление подслушивающего устройства. Один из способов физического повреждения закладок, подключенных к телефонной линии и линиям электропитания, - подача в линию коротких импульсов большой амплитуды. Так как в схемах закладок применяются миниатюрные низковольтные детали (транзисторы, конденсаторы), то высоковольтные импульсы их пробивают и схема закладки выводится из строя. Например, так называемый разрушитель «жучков» РК 3320 (РК Electronic) посылает в линию импульсы амплитудой до 4000 Вив течение 2-4 мин. приводит в неработоспособное состояние закладное устройство. Отечественный выжигатель телефонных закладных устройств ПТЛ-1500 выводит из строя закладные устройства путем подачи в телефонную линию импульсов напряжением 1600 В. Однако метод физического разрушения аппаратных закладок нельзя использовать без отключения от телефонной линии всех радиоэлектронных средств (современных электронных телефонных аппаратом, модемов ПЭВМ, факсов и т. д.). Более предпочтительными являются заградительные радиопомехи, имеющие ширину спектра излучения в 1.5-2 раза больше ширины спектра сигнала. В этом случае маломощный генератор помех (до 1 Вт) может гарантировано обеспечить безопасность информации от утечки через закладки, но при условии совпадения частот генератора помех и закладки. Однако знание частоты радиозакладки предполагает ее обнаружение, а обнаружение – локализацию с последующим ее изъятием. Поэтому зашумление сигналов закладок целесообразно при непрерывном радиомониторинге помещения и автоматическом включении на частотах излучения радиозакладок передатчика заградительной помехи. В автоматизированном комплексе «Крона-5» («Нелк») установлен блок прицельных радиопомех на частотах излучений обнаруженных закладных устройств, что дает возможность практически мгновенно нейтрализовать утечку информации через эти устройства. Тенденция информационного сопряжения настраиваемого передатчика заградительных помех с автоматизированными комплексами обнаружения радиозакладных устройств представляется определяющей для обеспечения безопасности информации в помещении. 8. Аппаратура нелинейной локации Нелинейные радиолокаторы используют нелинейные свойства полупроводников, имеющиеся в составе любых радиоэлектронных закладок. При облучении области пространства, в котором размещены полупроводники, высокочастотной электромагнитной волной с частотой f в отраженной волне появляются гармоники с частотами 2f, 3f и т. д. Так как амплитуда гармоники резко убывает с увеличением ее номера, то в основном используют 2-ю и реже 3-ю гармоники. По характеристикам 2 и 3-й гармоник отраженной волны принимается решение о нахождении в облучаемой области нелинейных элементов. Но наличие нелинейности характерно не только для полупроводников радиоэлектронных средств, но контактов между металлическими предметами с пленкой окислов на поверхности, например, ржавых прутьев в железобетонных плитах домов. Поэтому обнаружение 2-й гармоники в отраженном сигнале не является достаточным условием наличия закладного устройства. Одновременный анализ 2-й и 3-й гармоник позволяет провести селекцию их источников с большой достоверностью. Применение нелинейных локаторов обеспечивает высокий процент обнаружения закладных устройств, размещенных в железобетонных стенах, но гарантированное их выявление возможно только в результате последующего обследования предполагаемого местонахождения. На рынке имеется большой выбор моделей отечественных и зарубежных нелинейных локаторов. В зависимости от режима излучения их делят на локаторы с непрерывным и импульсным излучением. Проникающая глубина излучающей полны зависит от мощности и частоты излучения. В силу увеличения затухания электромагнитной волны в среде распространения с повышением частоты колебаний уровень мощности преобразованного отраженного сигнала тем ниже, чем ниже частота локатора. Но для излучений с более низкой частотой ухудшаются возможности локатора по локализации места нахождения нелинейности, так как при приемлемых размерах его антенны расширяется диаграмма направленности антенны локатора. Очевидно, что чем выше мощность излучения локатора, тем глубже проникает электромагнитная волна и тем больше вероятность обнаружения помещенной в стену закладки. Но большая мощность излучения оказывает вредное воздействие на оператора. Для обеспечения его безопасности максимальная мощность излучения локатора в непрерывном режиме не превышает 3-5 Вт. При импульсном режиме работы локатора мощность в импульсе достигает 300 Вт при меньшей средней мощности, не превышающей 1.5 Вт. Характеристики отечественных и зарубежных нелинейных радиолокаторов приведены в табл.6 и 7 соответственно. Таблица 6
Примечание. Мощность излучаемого сигнала, указанная в таблице для импульсных радиолокаторов. соответствует мощности импульса. Таблица 7.
Приемники нелинейных локаторов обеспечивают дальность обнаружения полупроводниковых элементов 0.5-2 и более метров и точность определения их местонахождения - несколько см (в локаторе «Родник» - 2 см). Максимальная глубина обнаружения объектов в маскирующей среде составляет десятки см, например, локатор «Циклон» обнаруживает радиоэлектронные средства в железобетонных стенах толщиной 50 см, в кирпичных и деревянных стенах-70 см. Отечественные локаторы по своим характеристикам не уступают, а некоторые образцы превышают показатели зарубежных, а по стоимости в несколько раз дешевле. Локатор «Обь» является полным аналогом зарубежных образцов. Радиолокаторы «Родник-ПМ», «Переход», «Энвис» имеют дополнительный режим анализа принятого от объекта сигнала, в том числе возможность прослушивания модулированных сигналов локатора, отраженных от полупроводниковых элементов закладок. Принцип модуляции аналогичен модуляции при высокочастотном навязывании. Локатор «Циклон» предоставляет возможность работы в двух режимах: в режиме поиска и в режиме «сторожа». В последнем режиме две антенны устанавливаются в проходе контрольно-пропускного пункта организации или в дверном проеме двери помещения, например, зала заседания. Этот локатор позволяют дистанционно контролировать скрытый внос или вынос радиоэлектронных средств. Нелинейные радиолокаторы обеспечивают высокую вероятность обнаружения закладных устройств всех типов, но являются достаточно сложными и дорогими средствами проверки помещения на отсутствие в них закладных устройств. 9. Обнаружители пустот, металлодетекторы и рентгеновские аппараты Эта группа приборов использует физические свойства среды, в которой может размещаться закладное устройство, или свойства элементов закладных устройств, независимые от режима их работы. Так как в пустотах сплошных сред (кирпичных и бетонных стенах, деревянных конструкциях и др.) могут устанавливаться долговременные дистанционно-управляемые закладные устройства, то выявление и обследование пустот проводится при «чистке» помещений. В простейшем случае пустоты в стене или любой другой сплошной среде обнаруживаются путем их простукивания. Пустоты в сплошных средах изменяют характер распространения структурного звука, в результате чего воспринимаемые слуховой системой человека спектры звуков в сплошной среде и в пустоте отличаются. Технические средства обнаружения пустот позволяют повысить достоверность выявления пустот. В качестве таких средств могут применяться как различные ультразвуковые приборы, в том числе медицинского назначения, так и специальные обнаружители пустот. Специальные технические средства для обнаружения пустот используют: - отличия в значениях диэлектрической проницаемости среды и пустоты; - различия в значениях теплопроводности воздуха и сплошной среды. |