|
Шпоры на 3 КМ БИО. Среды обитания, оказывающие какоелибо воздействие на
Виды могут по-разному распределяться в пространстве в соответствии с их потребностями и условиями местообитания. Такое распределение видов, составляющих биоценоз, в пространстве называется пространственной структурой биоценоза. Различают его вертикальную и горизонтальную структуры.
Вертикальная структура биоценоза образована отдельными его элементами, особыми слоями, которые называются ярусами. Ярус - совместно произрастающие группы видов растений, различающиеся по высоте и положению в биоценозе ассимилирующих органов (листья, стебли, подземные органы — клубни, корневища, луковицы и т.п.). Как правило, разные ярусы образованы разными жизненными формами (деревьями, кустарниками, кустарничками, травами, мхами).
Особи живых организмов распределены в пространстве неравномерно. Обычно они составляют группировки организмов, что является приспособительным фактором в их жизни. Такие группировки организмов определяютгоризонтальную структуру биоценоза — горизонтальное распределение особей, образующих различного рода узорчатость, пятнистость каждого вида.
Примеров такого распределения можно привести множество: это многочисленные стада зебр, антилоп, слонов в саванне, колонии кораллов на морском дне, косяки морских рыб, стаи перелетных птиц; заросли тростников и водных растений, скопления мхов и лишайников на почве в лесном биоценозе, пятна вереска или брусники в лесу.
К элементарным (структурным) единицам горизонтального строения растительных сообществ относятся микроценоз и микрогруппировка.
Микроценоз (от греч. micros — малый) — наименьшая по размерам структурная единица горизонтального расчленения сообщества, в которую входят все ярусы. Почти каждое сообщество включает комплекс микросообществ или микроценозов.
Микрогруппировка - сгущение особей одного или нескольких видов в пределах яруса, внутриярусные мозаичные пятна. Например, в моховом ярусе можно выделить различные пятна мхов с доминированием одного или нескольких видов. В травяно-кустарничковом ярусе встречаются черничные, чернич- но-кисличные, голубично-сфагновые микрогруппировки.
Наличие мозаичности имеет важное значение для жизни сообщества. Мозаичность позволяет более полно использовать различные тины микроместообитаний. Особям, образующим группировки, свойственна высокая выживаемость, они наиболее эффективно используют пищевые ресурсы. Это ведет к увеличению и разнообразию видов в биоценозе, способствует его устойчивости и жизнеспособности.
Видовое разнообразие биоценоза – совокупность видов растений и животных, образующих данный биоценоз; представлено всеми группами организмов – продуцентами, консументами и редуцентами; нарушение какого-либо звена в цепи питания вызывает нарушение биоценоза в целом (например, вырубка леса приводит к изменению видового состава насекомых, птиц, а следовательно и зверей).
8. Межвидовые взаимодействия
Взаимодействия между различными популяциями могут также быть положительными, отрицательными и нейтральными.
Отношения, при которых организмы, занимая сходные местообитания, практически не оказывают влияния друг на друга, носят название нейтрализма
В некоторых случаях взаимодействие оказывается положительным для обеих популяций (мутуализм), иногда положительным для одной и отрицательным для другой (хищничество, паразитизм), отрицательным для обеих (конкуренция) или положительным для одной и безразличным для другой (комменсализм). Совокупность всех взаимодействий между организмами составляет биотические факторы, действующие в экосистеме.
Мутуализм — широко распространенная форма взаимовыгодных отношений между видами, причем оба вида полностью зависят друг от друга..
К мутуализму относится и симбиоз азотофиксирующих клубеньковых бактерий и бобовых растений.
Кооперация (протокооперация) –форма взаимовыгодных отношений не обязательных для обоих партнеров.
Например, распространение семян растений муравьями, разведение муравьями тли на растениях.
Комменсализм — использование партнера в качестве источника питания, но без вреда для него. Комменсализм, основанный на потреблении остатков пищи хозяев, называют еще нахлебничеством.
Например, некоторые морские кишечнополостные — полипы, поселяясь на крупных рыбах, используют в пищу их испражнения, песцы сопровождают полярных медведей, доедая остатки их трапезы.
Разновидностью комменсализма является синойкия – использование партнера в качестве жилища.
Конкуренция— это взаимоотношения, возникающие между организмами одного или различных видов в одинаковых условиях среды или со сходными экологическими требованиями, т.е. между организмами одного трофического уровня (горизонтальные взаимоотношения). Конкуренция возникает в том случае, когда ресурсов недостаточно.
Например, саранчовые, грызуны и копытные, питающиеся травами, вступают между собой в конкурентные взаимоотношения.
Хищничество — прямое уничтожение одного вида другим или однократное использование добычи хищником таким образом, что используемый организм погибает. Отношения типа «хищник — жертва» — это прямые пищевые связи, которые для одного из партнеров имеют отрицательные, для другого — положительные последствия.
Для хищника характерно охотничье поведение.
Паразитизм — это форма взаимоотношений между организмами разных видов, при которой один организм (паразит) использует другой организм (хозяина) как среду обитания и источник питания, причиняя ему вред, но, как правило, не уничтожая его.
Паразитический образ жизни обычно служит специфическим признаком вида, он свойственней всем особям без исключения и закреплен в эволюции.
Формы проявления паразитизма чрезвычайно многообразны. Паразиты могут обитать в различных тканях и органах хозяина, питаться его тканями или переваренной пищей, проводить на теле или в теле хозяина всю свою жизнь или только часть ее, а также быть постоянными или временными паразитами. Паразитизм широко распространен в природе, существует 60 — 65 тысяч видов животных, ведущих паразитический образ жизни, что составляет 6 - 7% от общего числа всех видов, живущих на Земле. Количество паразитических форм у разных типов животного мира неодинаково. Наибольшее число паразитов установлено у типа простейших, плоских и круглых червей, а также членистоногих. Паразитическими организмами являются все вирусы, некоторые бактерии и грибы. Даже среди высших растений встречаются паразитические, поселяющиеся на других растениях, например, невелика, заразиха и др.
9. Определение экосистемы, соотношение понятий экосистема и биогеоценоз, структура экосистемы.
Экосисте́ма, или экологи́ческая систе́ма — биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии.
Экосистема — это функциональное единство живых организмов и среды их обитания. Основные характерные особенности экосистемы — ее безразмерность и безранговость. Замещение одних биоценозов другими в течение длительного периода времени называется сукцессией. Сукцессия, протекающая на вновь образовавшемся субстрате, называется первичной. Сукцессия на территории, уже занятой растительностью, называется вторичной.
Единицей классификации экосистем является биом — природная зона или область с определенными климатическими условиями и соответствующим набором доминирующих видов растений и животных.
Особая экосистема — биогеоценоз — участок земной поверхности с однородными природными явлениями. Составными частями биогеоценоза являются климатоп, эдафотоп, гидротоп (биотоп), а также фитоценоз, зооценоз и микробоценоз (биоценоз).
С целью получения продуктов питания человек искусственно создает агроэкосистемы. Они отличаются от естественных малой устойчивостью и стабильностью, однако более высокой продуктивностью.
11. Существуют 2 основных типа трофических цепей — пастбищные и детритные.
В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные (например, зоопланктон, питающийся фитопланктоном) , потом хищники (консументы) 1-го порядка (например, рыбы, потребляющие зоопланктон) , хищники 2-го порядка (например, щука, питающаяся другими рыбами) . Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка.
В детритных трофических цепях (цепи разложения) , наиболее распространённых в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации. Таким образом, детритные трофические цепи начинаются от детрита (органических останков) , идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям — хищникам. В водных экосистемах (особенно в эвтрофных водоёмах и на больших глубинах океана) часть продукции растений и животных также поступает в детритные трофические цепи.
12. Экологические пирамиды
Пирамида чисел
Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. В экологии пирамида численностей используется редко, так как из-за большого количества особей на каждом трофическом уровне очень трудно отобразить структуру биоценоза в одном масштабе.
Чтобы уяснить, что такое пирамида чисел, приведем пример. Предположим, что в основании пирамиды 1000 т травы, массу которой составляют сотни миллионов отдельных травинок. Этой растительностью смогут прокормиться 27 млн кузнечиков, которых, в свою очередь, могут употребить в пищу около 90 тыс. лягушек. Сами лягушки могут служить едой 300 форелям в пруду. А это количество рыбы может съесть за год один человек! Таким образом, в основании пирамиды несколько сотен миллионов травинок, а на ее вершине — один человек. Такова наглядная потеря вещества и энергии при переходе с одного трофического уровня на другой.
Иногда случаются исключения из правила пирамид, и тогда мы имеем дело с перевернутой пирамидой чисел. Это можно наблюдать в лесу, где на одном дереве живут насекомые, которыми питаются насекомоядные птицы. Таким образом, численность продуцентов меньше, нежели консументов.
Пирамида биомасс
Пирамида биомасс - соотношение между продуцентами и консументами, выраженное в их массе (общем сухом весе, энергосодержании или другой мере общего живого вещества). Обычно в наземных биоценозах общий вес продуцентов больше, чем консументов. В свою очередь, общий вес консументов первого порядка больше, нежели консументов второго порядка, и т.д. Если организмы не слишком различаются по размерам, то на графике, как правило, получается ступенчатая пирамида с сужающейся верхушкой.
Американский эколог Р. Риклефс объяснял структуру пирамиды биомасс так: «В большинстве наземных сообществ пирамида биомасс сходна с пирамидой продуктивности. Если собрать все организмы, обитающие на каком-нибудь лугу, то вес растений окажется гораздо больше веса всех прямокрылых и копытных, питающихся этими растениями. Вес этих растительноядных животных в свою очередь будет больше веса птиц и кошачьих, составляющих уровень первичных плотоядных, а эти последние также будут превышать по весу питающихся ими хищников, если таковые имеются. Один лев весит довольно много, но львы встречаются столь редко, что вес их, выраженный в граммах на 1 м2, окажется ничтожным».
Как и в случае с пирамидами чисел, можно получить так называемую обращенную (перевернутую) пирамиду биомасс, когда биомасса продуцентов оказывается меньше, чем консументов, а иногда и редуцентов, и в основании пирамиды находятся не растения, а животные. Это касается в основном водных экосистем. Например, в океане при довольно высокой продуктивности фитопланктона общая масса его в данный момент может быть меньше, чем у зоопланктона и конечного потребителя-консумента (киты, крупные рыбы, моллюски).
Пирамида энергии
Пирамида энергии отражает величину потока энергии, скорость прохождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.
Все экологические пирамиды строятся по одному правилу, а именно: в основании любой пирамиды находятся зеленые растения, а при построении пирамид учитывается закономерное уменьшение от ее основания к вершине численности особей (пирамида чисел), их биомассы (пирамида биомасс) и проходящей через пищевые цени энергии (пирамида энергии).
В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергии, согласно которому с одного трофического уровня на другой через пищевые цени переходит в среднем около 10 % энергии, поступившей на предыдущий уровень экологической пирамиды. Остальная часть энергии тратится на обеспечение процессов жизнедеятельности. В результате процессов обмена организмы теряют в каждом звене пищевой цепи около 90 % всей энергии. Следовательно, для получения, например, 1 кг окуней должно быть израсходовано приблизительно 10 кг рыбьей молоди, 100 кг зоопланктона и 1000 кг фитопланктона.
Общая закономерность процесса передачи энергии такова: через верхние трофические уровни энергии проходит значительно меньше, чем через нижние. Вот почему большие хищные животные всегда редки, и нет хищников, которые питались бы, к примеру, волками. В таком случае они просто не прокормились бы, настолько волки немногочисленны.
13. Биосфе́ра— оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «плёнка жизни»; глобальная экосистема Земли.
Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: «Человек становится могучей геологической силой».
Границы биосферы
Верхняя граница в атмосфере: 15—20 км. Она определяется озоновым слоем, задерживающим коротковолновое ультрафиолетовое излучение, губительное для живых организмов.
Нижняя граница в литосфере: 3,5—7,5 км. Она определяется температурой перехода воды в пар и температурой денатурации белков, однако в основном распространение живых организмов ограничивается вглубь несколькими метрами.
Граница между атмосферой и литосферой в гидросфере: 10—11 км. Определяется дном Мирового Океана, включая донные отложения.
Состав биосферы
Живое вещество — вся совокупность тел живых организмов, населяющих Землю, физико-химически едина, вне зависимости от их систематической принадлежности. Масса живого вещества сравнительно мала и оценивается величиной 2,4…3,6·1012 т (в сухом весе) и составляет менее одной миллионной части всей биосферы (ок. 3·1018 т), которая, в свою очередь, представляет собой менее одной тысячной массы Земли. Но это одна «из самых могущественных геохимических сил нашей планеты», поскольку живые организмы не просто населяют земную кору, а преобразуют облик Земли. Живые организмы населяют земную поверхность очень неравномерно. Их распространение зависит от географической широты.
Биогенное вещество — вещество, создаваемое и перерабатываемое живым организмом. На протяжении органической эволюции живые организмы тысячекратно пропустили через свои органы, ткани, клетки, кровь большую часть атмосферы, весь объём мирового океана, огромную массу минеральных веществ. Эту геологическую роль живого вещества можно представить себе по месторождениям угля, нефти, карбонатных пород и т. д.
Косное вещество — продукты, образующиеся без участия живых организмов.
Биокосное вещество — вещество, которое создается одновременно живыми организмами и косными процессами, представляя динамически равновесные системы тех и других. Таковы почва, ил, кора выветривания и т. д. Организмы в них играют ведущую роль.
Вещество, находящееся в радиоактивном распаде.
Рассеянные атомы, непрерывно создающиеся из всякого рода земного вещества под влиянием космических излучений.
Вещество космического происхождения.
14. Живое вещество — вся совокупность живых организмов в биосфере, вне зависимости от их систематической принадлежности.
1. Энергетическая функция
Поглощение солнечной энергии при фотосинтезе и химической энергии при разложении энергонасыщенных веществ, передача энергии по пищевым цепям.
В результате осуществляется связь биосферно-планетарных явлений с космическим излучением, преимущественно с солнечной радиацией. За счет накопленной солнечной энергии протекают все жизненные явления на Земле. Недаром Вернадский назвал зеленые хлорофилльные организмы главным механизмом биосферы.
Поглощенная энергия распределяется внутри экосистемы между живыми организмами в виде пищи. Частично энергия рассеивается в виде тепла, а частично накапливается в отмершем органическом веществе и переходит в ископаемое состояние. Так образовались залежи торфа, каменного угля, нефти и других горючих полезных ископаемых.
— газовая функция обусловливает миграцию газов и их превращения, обеспечивает газовый состав биосферы. Преобладающая масса газов на Земле имеет биогенное происхождение. В процессе функционирования живого вещества создаются основные газы: азот, кислород, углекислый газ, сероводород, метан и др. Хорошо видно, что газовая функция является совокупностью двух основополагающих функций — деструктивной и средообразующей;
3. Концентрационная функция
Так называется избирательное накопление в ходе жизнедеятельности определенных видов веществ для построения тела организма или удаляемых из него при метаболизме. В результате концентрационной функции живые организмы извлекают и накапливают биогенные элементы окружающей среды. В составе живого вещества преобладают атомы легких элементов: водорода, углерода, азота, кислорода, натрия, магния, кремния, серы, хлора, калия, кальция. Концентрация этих элементов в теле живых организмов в сотни и тысячи раз выше, чем во внешней среде. Этим объясняется неоднородность химического состава биосферы и ее существенное отличие от состава неживого вещества планеты. Наряду с концентрационной функцией живого организма вещества выделяется противоположная ей по результатам — рассеивающая. Она проявляется через трофическую и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, гибели организмов при разного рода перемещениях в пространстве, смене покровов. Железо гемоглобина крови рассеивается, например, через кровососущих насекомых.
— окислительно-восстановительная функция заключается в химическом превращении главным образом тех веществ, которые содержат атомы с переменной степенью окисления (соединения железа, марганца, азота и др.). При этом на поверхности Земли преобладают биогенные процессы окисления и восстановления. Обычно окислительная функция живого вещества в биосфере проявляется в превращении бактериями и некоторыми грибами относительно бедных кислородом соединений в почве, коре выветривания и гидросфере в более богатые кислородом соединения. Восстановительная функция осуществляется при образовании сульфатов непосредственно или через биогенный сероводород, производимый различными бактериями. И здесь мы видим, что данная функция является одним из проявлений средообразующей функции живого вещества;
15. Ноосфе́ра — сфера разума; сфера взаимодействия общества и природы, в границах которой разумная человеческая деятельность становится определяющим фактором развития
Ноосфера — предположительно новая, высшая стадия эволюции биосферы, становление которой связано с развитием общества, оказывающего глубокое воздействие на природные процессы. его как существ
Зародившись на планете, Н. имеет тенденцию к постоянному расширению, превращаясь, т. о., в особый структурный элемент космоса, выделяемый по социальному охвату природы. В понятии Н. подчёркивается необходимость разумной (т. е. отвечающей потребностям развивающегося человечества) организации взаимодействия общества и природы в противоположность стихийному, хищнич. отношению к ней, приводящему к ухудшению окружающей среды. Поскольку характер отношения общества к природе определяется не только науч.-технич. уровнем, но и социальным строем, постольку сознат. формирование Н. органически связано со становлением коммунистич. обществ.-экономич. формации, создающей условия для превращения знаний, накопленных человечеством, в материальную силу, рационально преобразующую природную среду.
16. Биоразнообра́зие (биологи́ческое разнообра́зие) — разнообразие жизни во всех её проявлениях. Также под биоразнообразием понимают разнообразие на трёх уровнях организации: генетическое разнообразие (разнообразие генов и их вариантов — аллелей), видовое разнообразие (разнообразие видов в экосистемах) и, наконец, экосистемное разнообразие, то есть разнообразие самих экосистем.
Величина биоразнообразия как внутри вида, так и в рамках всей биосферы признана в биологии одним из главных показателей жизнеспособности (живучести) вида и экосистемы в целом и получила название «Принцип биологического разнообразия». Действительно, при большом однообразии характеристик особей внутри одного вида (это относится и к человеку, и к растениям, и к микроорганизмам) любое существенное изменение внешних условий (погода, эпидемия, изменение кормов и пр.) более критично скажется на выживаемости вида, чем в случае, когда последний имеет большую степень биологического разнообразия. То же (на другом уровне) относится и к богатству (биоразнообразию) видов в биосфере в целом.
С точки зрения потребителя элементы биоразнообразия являются природными кладовыми, которые уже сегодня представляют зримую пользу для человека или могут оказаться полезными в будущем.
Биоразнообразие как таковое приносит как хозяйственную, так и научную пользу (например, в поисках новых лекарственных препаратов или способов лечения).
Выбор в пользу сохранения биоразнообразия — это этический выбор. Человечество в целом является частью экологической системы планеты и зависит от её благополучия, а потому должно бережно относиться к биосфере.
Значимость биоразнообразия можно также характеризовать в эстетическом, сущностном и этическом плане. Природа прославляется и воспевается художниками, поэтами и музыкантами всего мира; для человека природа является вечной и непреходящей ценностью.
В период научно-технической революции главной силой, преобразующей растительный и животный мир, выступает человек. Деятельность человека в последние десятилетия привела к тому, что темпы исчезновения многих видов животного мира, в первую очередь млекопитающих и птиц, стали гораздо более интенсивными и значительно превышают расчётные средние темпы утраты видов в предыдущих тысячелетиях. Прямые угрозы биоразнообразию, как правило, базируются на социально-экономических факторах. Так, рост народонаселения ведёт к повышению потребности в продуктах питания, соответствующему расширению сельскохозяйственных угодий, интенсификации землепользования, использованию земель под застройку, общему наращиванию потребления и усилению деградации природных ресурсов.
17. Исчезновение биологических видов является нормальным процессом развития жизни на Земле. В процессе эволюции неоднократно происходило массовое вымирание видов. Примером может служить пермское вымирание, приведшее к исчезновению всех трилобитов.
Начиная с XVII века[источник не указан 949 дней] основным фактором ускорения вымирания стала хозяйственная деятельность человека. В общем плане причинами снижения разнообразия служат растущее потребление ресурсов, пренебрежительное отношение к видам и экосистемам, недостаточно продуманная государственная политика в области эксплуатации природных ресурсов, непонимание значимости биологического разнообразия и рост численности населения Земли[комм. 1].
Причинами исчезновения отдельных видов обычно являются нарушение местообитания и чрезмерная добыча. В связи с разрушением экосистем уже погибли многие десятки видов. Только обитателей тропических лесов исчезло около 100 видов[источник не указан 615 дней]. От чрезмерной добычи страдают промысловые животные, особенно те, которые высоко ценятся на международном рынке. Под угрозой находятся редкие виды, обладающие коллекционной ценностью.
К числу других причин относятся: влияние со стороны интродуцированных видов, ухудшение кормовой базы, целенаправленное уничтожение с целью защиты сельского хозяйства и промысловых объектов.
Разрушение мест обитания
Главная угроза биологическому разнообразию состоит в нарушении мест обитания, и поэтому для сохранения биологического разнообразия самое важное – это их защита. Потеря местообитаний сопряжена как с прямым их разрушением, так и с повреждениями в виде загрязнения и фрагментации. Для большинства стоящих на пороге вымирания растений и животных именно утрата местообитаний является первостепенной угрозой. К другим важным факторам относятся негативное влияние интродуцированных видов и чрезмерная эксплуатация
Фрагментация мест обитания
Помимо полного разрушения, местообитания, раньше занимавшие большие площади, часто разбиваются на маленькие кусочки дорогами, полями, городами и прочими сооружениями. Фрагментация мест обитания – это процесс, при котором сплошная площадь местообитания одновременно сокращается и распадается на два или более фрагмента (Shafer, 1990; Reed еt al., 1996). Разрушение местообитания может не затронуть лишь локальные территории. Эти фрагменты часто отделены один от другого измененными или деградированными формами ландшафта (рис. 2.7). Как упоминалось выше, эту ситуацию может описать биогеографическая модель острова, где фрагменты рассматриваются как острова мест обитания в негостеприимном “море” человеческой деятельности. Фрагментация происходит практически при всяком крупном сокращении площади местообитаний, но это может случиться и при относительно ничтожном сокращении, например, когда исходное местообитание прорезается автомобильными и железными дорогами, каналами, линиями электропередач, изгородями, нефтепроводами, следами пожаров и другими барьерами, препятствующими свободному передвижению видов.
Фрагменты отличаются от исходного сплошного местообитания тем, что: 1) фрагменты имеют относительно большую протяженность пограничных зон, смежных с человеческой деятельностью и 2) центр каждого фрагмента расположен близко от края.
Фрагментация мест обитания угрожает существованию видов и более сложным образом. Прежде всего, фрагментация ограничивает возможности видов к расселению. Многие виды птиц, млекопитающих и насекомых, обитающие в глубине леса, не могут пересечь даже узкие полосы открытого пространства из-за опасности попасться хищнику. В результате некоторые виды после исчезновения популяции во фрагменте не имеют возможности заселить его вновь. Более того, если из-за фрагментации исчезают животные, ответственные за распространение мясистых и липких плодов, то страдают и соответствующие виды растений. В конечном итоге изолированные фрагменты местообитаний не заселяются многими исходно характерными для них видами. А поскольку внутри отдельных фрагментов происходит естественное исчезновение видов из-за закономерных сукцессионных и популяционных процессов, а новые виды из-за барьеров не могут пополнить их убыль, следовательно, во фрагменте происходит постепенное видовое обеднение.
Второй опасный аспект фрагментации местообитания заключается в том, что сокращается арена поиска корма для многих типичных животных. Многим видам животных, представленных отдельными особями или социальными группами, которые кормятся широко рассеянными или сезонно доступными кормами и пользуются сезонно распределенными источниками воды, необходима свобода передвижения по обширному пространству. Спасительный ресурс может использоваться только несколько недель в году или даже раз в несколько лет, но при фрагментации местообитания, изолированные виды лишены возможности мигрировать внутри своего естественного ареала в поисках этого редкого, но порой столь важного ресурса. Например, изгороди могут воспрепятствовать естественной миграции крупных травоядных животных, таких как гну или бизоны, заставляя их пастись на одном месте, что в конце концов приводит животных к голодной смерти и к деградации местообитания.
Загрязнение окружающей среды является наиболее универсальной и коварной формой ее разрушения. Чаще всего его вызывают пестициды, удобрения и химикаты, промышленные и городские сточные воды, газовые выбросы заводов и автомобилей, и отложения, намытые с возвышенностей. Визуально эти типы загрязнения часто бывают не очень заметны, хотя они и происходят вокруг нас каждый день почти в любой части света. Глобальное влияние загрязнения на качество вод, качество воздуха и даже климат на планете находится в центре внимания не только из-за угрозы биологическому разнообразию, но и из-за влияния на здоровье человека. Хотя иногда загрязнение окружающей среды является очень заметным и пугающим, например в случае с массовыми разливами нефти и 500 пожарами на нефтяных скважинах, имевшими место в ходе войны в Персидском заливе, но наиболее угрожающими являются скрытые формы загрязнения, главным образом потому, что их действие проявляется не сразу.
Инвазивные виды
Географические ареалы многих видов ограничены главным образом природными и климатическими барьерами. Млекопитающие Северной Америки не способны пересечь Тихий океан и достичь Гавайев, рыбы Карибского моря не могут пересечь Центральную Америку и достигнуть Тихого океана, а пресноводные рыбы из одного африканского озера никак не могут пересечь сушу и попасть в другие соседние изолированные озера. Океаны, пустыни, горы, реки – все они ограничивают передвижение видов. Благодаря географической изоляции пути эволюции животных в каждой части света проходили по-своему. Интродуцировав в эти фаунистические и флористические комплексы чуждые виды, человек нарушил естественный ход событий. В доиндустриальные эпохи человек, осваивая новые территории, приносил сюда с собой культурные растения и домашних животных. Европейские моряки, чтобы обеспечить себя пищей на обратном пути, оставляли на необитаемых островах коз и свиней.
Для того чтобы выжить, человек всегда занимался охотой, сбором плодов, использовал природные ресурсы. До тех пор, пока численность населения была невелика и его технологии примитивны, человек мог устойчиво использовать его окружающую среду, охотиться и собирать урожай, не доводя нужные виды до исчезновения. Однако по мере увеличения народонаселения нагрузка на окружающую среду усилилась. Методы выращивания урожая стали несравненно более масштабными и эффективными, и привели к почти полному вытеснению крупных млекопитающих из многих биологических сообществ, в результате появились странно “пустые” местообитания [Redford, 1992]. В тропических лесах и саваннах охотничьи ружья вытеснили луки, дротики и стрелы. Во всех океанах мира для ловли рыбы используются мощные рыболовные моторные суда и рыбоперерабатывающие “плавбазы”. Люди, занимающиеся мелким рыболовецким бизнесом, оснащают свои лодки и каноэ навесными моторами, что позволяет им собирать улов быстрее и с большей территории, чем это было возможно раньше. Даже в доиндустриальном обществе чрезмерная эксплуатация ресурсов приводила к снижению численности и вымиранию местных видов
18. Категории видов, подверженные вымиранию:
Вымирающие виды— биологические виды, которые подвержены угрозе вымирания из-за своей критически малой численности либо воздействия определенных факторов окружающей среды.
Вымирающий вид — обычно таксономический вид, но может быть и другой эволюционно значимой единицей, например подвидом. МСОП определяет долю вымирающих видов как 40 % всех организмов, основанных на разнообразии видов, известных до 2006
Красная книга МСОП
Вымирающие виды в Красной книге МСОП относятся к специфической категории «видов, находящихся под угрозой», а также могут быть частью категории «подверженные критической опасности».
Наиболее всесторонней справочной системой по вопросу охранного статуса видов на Земле является Красная книга МСОП. В ней с учетом как вышеупомянутых общих факторов, так и индивидуальных особенностей, характерных для каждого вида, виды распределены на 9 категорий:
Исчезнувший (Extinct, EX) — вид, который исчез после смерти последнего животного данного вида и особей которых на момент исчезновения не было в неволе. Сюда не относятся животные, вымершие по различным причинам до 1500 года (как, например, динозавры).
Исчезнувший в природе (Extinct in the Wild, EW) — вид, полностью истреблённый в природе, но сохранённый в неволе.
Находится под критической угрозой (Critically Endangered, CR) — виды, количество особей которых в природе не превышает нескольких сотен.
Находится под угрозой (Endangered, EN) — вид, количество особей которого довольно велико, но в силу определённых причин ещё нельзя сказать, что он не исчезнет в течение нескольких лет.
Уязвимый (Vulnerable, VU) — многочисленный вид, который, однако, в силу причин (например, вырубки леса) всё ещё в опасности.
Близкий к угрозе вымирания (Near Threatened, NT) — вид, который практически стоек, но ещё не в безопасности
Находится под небольшой угрозой (Least Concern, LC) — вид, который настолько многочислен, что сомнительно, что он самостоятельно попадёт под угрозу вымирания через десятки лет. С 2009 года к этому классу причислены люди.
Сведения недостаточны (Data Deficient, DD) — виды, численность которых неясна.
Неисследованный (Not Evaluated, NE) — виды, сведения о которых не позволяют даже приблизительно определить угрозу их существования.
20. История представлений о развитии жизни на земле.
Бонне следующим образом интерпретировал идею «лестницы существ». Между самыми простейшими и совершеннейшими проявлениями природы существуют постепенные переходы так, что все тела составляют всеобщую непрерывную цепь. Основание лестницы составляют неделимые — монады, а ее вершину венчает высшее совершенство — бог. От «невесомых материй» через огонь, воздух, воду, «земли», металлы, «камни», промежуточные формы между минералами и растениями, между растениями и низшими животными (зоофиты) и через них к высшим; животным и человеку тянется единая нить без скачков и перерывов. Каждое царство природы составляет свою лестницу, непосредственно примыкающую концами через промежуточные формы к лестнице соседнего царства. Всеобщее единство и согласованность в природе обеспечиваются гармонией, предустановленной богом.
Первую относительно удачную искусственную систему органического мира разработал шведский натуралист Карл Линней (1707—1778). За основу своей системы он принял вид и его считал элементарной единицей живой природы. Близкие виды объединились им в роды, роды в отряды, отряды в классы.
Для обозначения вида он использовал два латинских слова: первое — название рода, второе — видовое название (редька дикая). Этот принцип двойной номенклатуры сохранился в систематике и до настоящего времени.
Недостатки системы Линнея состояли в том, что при классификации он учитывал лишь 1-2 признака (у растений — число тычинок, у животных — строение дыхательной и кровеносной системы), не отражающих подлинного родства, поэтому далекие роды оказались в одном классе, а близкие — в разных. Виды в природе Линней считал неизменными, созданными творцом.
Первую последовательную теорию эволюции живых организмов разработал французский ученый Жан Батист Ламарк (1744-1829). В книге «Философия зоологии», вышедшей в 1809 году, Ламарк предположил, что в течение жизни каждая особь изменяется, приспосабливается к окружающей среде. Он утверждал, что разнообразие животных и растений есть результат исторического развития органического мира — эволюции, которую понимал как ступенчатое развитие, усложнение организации живых организмов от низших форм к высшим и назвал «градацией» Он предложил своеобразную систему организации мира, расположив в ней родственные группы в восходящем порядке — от простых к более сложным, в виде «лестницы» Но Ламарк ошибочно полагал, что изменение среды всегда вызывает у организмов полезные изменения.
21. Искусственный отбор — процесс создания новых пород животных и сортов культурных растений путем сохранения и размножения особей с ценными для человека признаками и свойствами.
Ч. Дарвин обратил внимание на многообразие пород и сортов. Отметив особые изменения, свойства, признаки у животных и растений, человек отбирает для себя только особей, обладающих нужными ему особенностями. Например, отбирая дыню и арбуз, человек планирует получение качественных плодов. У моркови и свеклы ценятся только сладкие корнеплоды, у картофеля — крупные клубни, у мака — нераскрывающиеся коробочки. Отбор по полезным для человека признакам растений и животных Ч. Дарвин назвал искусственным отбором. Впервые Ч. Дарвин заметил, что нельзя только изменчивостью объяснить все различия между породами и сортами. Если изменчивость в природе подвергает изменениям все органы растений и животных, то при искусственном отборе человек отбирает организмы с необходимыми для него признаками, поэтому Ч. Дарвин поставил перед собой цель — выяснить механизм эволюционного процесса. Для этого он начал изучать сельскохозяйственную практику Англии. Ч. Дарвин исследовал получение новых форм организмов (пород животных и сортов растений) в практике сельского хозяйства. Затем он приступил к изучению причин появления новых видов в природе и заметил, что основным принципом процесса образования новых форм в природе и практике сельского хозяйства является отбор. Он сумел показать огромные различия между искусственным и естественным отбором. В результате Ч. Дарвин заложил основу учения об искусственном и естественном отборе. В работе "Изменение домашних животных и культурных растений", изданной в 1868 г., Ч. Дарвин дал полное описание происхождения пород и их многообразия. Он изучил около 400 пород крупного рогатого скота. Животные отличались друг от друга по величине черепа, форме тела, окраске, по развитию скелета и мышц. Несмотря на множество отличий, он пришел к выводу, что предком всех полученных путем искусственного отбора пород и сортов является один дикий вид. Множество примеров, приведенных Ч. Дарвиным, полностью опровергло господствовавшее в то время убеждение, что у каждой породы или сорта есть свой дикий предок. Опровергая такое мнение, Ч. Дарвин приводил много примеров. Например, все породы домашних кур произошли от дикой банкив- ской курицы, домашние утки — от утки- кряквы, породы кроликов — от дикого европейского кролика (рис. 15). Породы крупного рогатого скота берут начало от дикого европейского быка — тура, собаки — от волков и т. д.
Бессознательный — при этой форме отбора сохраняются лучшие экземпляры без постановки определенной цели;
Методический — человек целенаправленно подходит к созданию новой породы или сорта, ставя перед собой определенные задачи. Методический отбор — творческий процесс, дающий более быстрые результаты, чем бессознательный. В основе такого способа разведения лежит изменчивость признаков, их наследуемость и отбор.
22. Естественный отбор — основной эволюционный процесс, в результате действия которого в популяции увеличивается число особей, обладающих максимальной приспособленностью (наиболее благоприятными признаками), в то время, как количество особей с неблагоприятными признаками уменьшается. В свете современной синтетической теории эволюции естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовыхтаксонов. Естественный отбор — единственная известная причина адаптаций, но не единственная причина эволюции. К числу неадаптивных причин относятся генетический дрейф, поток генов и мутации.
При определенной, или групповой, изменчивости многие особи данной породы или сорта под влиянием определенной причины изменяются одинаковым образом. Например, рост организма зависит от количества пищи, окраска — от ее качества. Неопределенная, или индивидуальная, изменчивость проявляется в тех отличительных признаках, которые свойственны отдельным особям одного и того же вида.
Неопределенная изменчивость, напротив, происходит в самых различных направлениях, не имеет прямого приспособительного значения, проявляется только у сравнительно немногих особей и в то же время имеет наследственный характер и устойчиво передается потомству. Она доставляет хороший материал для селекционеров, которым нужно выбрать желательные для них изменения и обеспечить сохранение этих изменений в потомстве. Именно неопределенные изменения, по мнению Дарвина, являются главным материалом, из которого селекционеры создают новые сорта и породы.
23. Доказа́тельства эволю́ции — научные данные и концепции, подтверждающие происхождение всех живых существ на Земле от общего предка[ 2]. Благодаря этим доказательствам основы эволюционного учения получили признание в научном сообществе, а ведущей системой представлений о процессах видообразования стала синтетическая теория эволюции[1][ 3].
Эволюционные процессы наблюдаются как в естественных, так и лабораторных условиях. Известны случаи образования новых видов[2]. Описаны также случаи развития новых свойств посредством случайныхмутаций[3]. Факт эволюции на внутривидовом уровне доказан экспериментально, а процессы видообразования непосредственно наблюдались в природе.
Чтобы получить сведения об эволюционной истории жизни, палеонтологи анализируют ископаемые останки организмов. Степень родства между современными видами можно установить, сравнивая их строение[4], геномы, развитие эмбрионов (эмбриогенез)[5]. Дополнительный источник информации об эволюции — закономерности географического распространения животных и растений, которые изучаетбиогеография[6]. Все эти данные укладываются в единую картину — эволюционное дерево жизни.
Общепринятая в научном сообществе классификация живых организмов представляет собой многоуровневую иерархическую структуру: организмы делятся на царства, царства делятся на типы, типы — на классы, классы — на отряды, и так далее. В результате такого ветвления получается филогенетическое дерево[ 4]. Существуют разногласия между биологами по поводу отнесения отдельных видов к конкретным группам, но эти противоречия имеют частный характер. Практика показывает, что биологические классификации, построенные на основе разных признаков, в тенденции стремятся к одной и той же древовидной иерархической схеме — естественной классификации. А значит, в основе этой классификации, возможно, существует закономерность.
24. Микроэволюция — это распространение в популяции малых изменений в частотах аллелей на протяжении нескольких поколений; эволюционные изменения на внутривидовом уровне[1]. Такие изменения происходят из-за следующих процессов:мутации, естественный отбор, искусственный отбор, перенос генов и дрейф генов. Эти изменения приводят к дивергенции популяций внутри вида, и, в конечном итоге, к видообразованию
1. Стабилизирующий — направленный на поддержание средней нормы реакции признака организма и отклонения особей с крайней нормой реакции в постоянных условиях среды. Отбор действует в постоянных условиях среды, консервативный, направленный на сохранение основных признаков вида в не измененном состоянии. 2. Движущий — приводит к закреплению признаков, которые отклоняются от нормы. Отбор действует в переменчивых условиях среды, приводит к изменению средней нормы реакции, эволюции вида. 3. Дизруптивний (разрывающий) — отбор, направленный на сохранение особей с крайними признаками и уничтожения особей со средними признаками. Действует в переменчивых условиях, приводит к разъединению единственной популяции и образованию двух новых популяций с отличными признаками. Отбор может привести к появлению новых популяций и видов. Например, популяции бескрылых и крылатых форм насекомых.
Любая форма отбора действует не случайно, а проходит через сохранение и нагромождение полезных признаков. Отбор происходит успешно в том случае, когда больший спектр изменчивости и более разнообразные генотипы видов.
Популяционные волны играют большую роль в ходе микроэволюции. С возрастанием численности популяции увеличивается вероятность появления новых мутаций и их комбинаций. Если в среднем один мутант появляется на 10 тыс. особей, то при возрастании численности популяции в 100 раз общее число мутантов увеличится во столько же раз.
Мута́ция — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) преобразование генотипа, происходящее под влиянием внешней или внутренней среды.
Изоля́ция (в генетике популяций) — исключение или затруднение свободного скрещивания между особями одного вида. Изоляция является элементарным эволюционным фактором, действующим на микроэволюционном уровне, и приводит квидообразованию.
25. В эволюционном смысле понятие «адаптация» относится не столько к отдельной особи, сколько к популяции, виду, биогеоценозу.
Возникновение приспособленности к среде – основной результат эволюции. Адаптации (от лат. adaptatio – прилаживание, приспособление) рассматривают как совокупность специальных свойств, которые способны обеспечить выживание и размножение организмов в конкретных условиях среды.
Общая приспособленность живых организмов к условиям среды обитания складывается из множества отдельных адаптаций самого разного масштаба.
Для возникновения адаптаций, помимо мутационного процесса, необходимы другие движущие силы эволюции, прежде всего – естественный отбор.
Приспособления не возникают в готовом виде, а складываются в процессе отбора «удачных вариантов» из множества изменившихся особей популяции.
Средства пассивной защиты. К средствам пассивной защиты относятся такие свойства, которые определяют значительную вероятность сохранения жизни особи в борьбе за существование.
Сложные адаптации. К сложным адаптациям относятся: способность растений к насекомоядности, развитие глаза как органа зрения, возникновение взаимных приспособлений у насекомоопыляемых растений и насекомых-опылителей.
|
|
|