Главная страница

Лекция Право технического руководства. Статья Основные понятия


Скачать 2.29 Mb.
НазваниеСтатья Основные понятия
Дата01.08.2022
Размер2.29 Mb.
Формат файлаdocx
Имя файлаЛекция Право технического руководства.docx
ТипСтатья
#638885
страница2 из 8
1   2   3   4   5   6   7   8

N 96-ФЗ "Об охране атмосферного воздуха" от 4 мая 1999

Статья 12. Нормативы выбросов вредных (загрязняющих) веществ в атмосферный воздух и вредных физических воздействий на атмосферный воздух

1. В целях государственного регулирования выбросов вредных (загрязняющих) веществ в атмосферный воздух устанавливаются следующие нормативы таких выбросов:

технические нормативы выбросов;

предельно допустимые выбросы.

2. Технические нормативы выбросов устанавливает федеральный орган исполнительной власти в области охраны окружающей среды или другой уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти по согласованию с федеральным органом исполнительной власти в области охраны окружающей среды для отдельных видов стационарных источников выбросов вредных (загрязняющих) веществ в атмосферный воздух, а также для являющихся источниками загрязнения атмосферного воздуха транспортных или иных передвижных средств и установок всех видов.

3. Предельно допустимые выбросы устанавливаются территориальными органами федерального органа исполнительной власти в области охраны окружающей среды для конкретного стационарного источника выбросов вредных (загрязняющих) веществ в атмосферный воздух и их совокупности (организации в целом).

4. В случае невозможности соблюдения юридическими лицами, имеющими источники выбросов вредных (загрязняющих) веществ в атмосферный воздух, предельно допустимых выбросов территориальные органы федерального органа исполнительной власти в области охраны окружающей среды могут устанавливать для таких источников временно согласованные выбросы по согласованию с территориальными органами других федеральных органов исполнительной власти.

Временно согласованные выбросы устанавливаются на период поэтапного достижения предельно допустимых выбросов при условиях соблюдения технических нормативов выбросов и наличия плана уменьшения выбросов вредных (загрязняющих) веществ в атмосферный воздух.

Сроки поэтапного достижения предельно допустимых выбросов устанавливаются органами государственной власти субъектов Российской Федерации по представлению соответствующих территориальных органов специально уполномоченного федерального органа исполнительной власти в области охраны атмосферного воздуха.

План уменьшения выбросов вредных (загрязняющих) веществ в атмосферный воздух разрабатывается и осуществляется юридическими лицами, для которых устанавливаются временно согласованные выбросы, с учетом степени опасности указанных веществ для здоровья человека и окружающей среды.

Статья 23. Мониторинг атмосферного воздуха

1. В целях наблюдения за загрязнением атмосферного воздуха, комплексной оценки и прогноза его состояния, а также обеспечения органов государственной власти, органов местного самоуправления, организаций и населения текущей и экстренной информацией о загрязнении атмосферного воздуха Правительство Российской Федерации, органы государственной власти субъектов Российской Федерации, органы местного самоуправления организуют государственный мониторинг атмосферного воздуха и в пределах своей компетенции обеспечивают его осуществление на соответствующих территориях Российской Федерации, субъектов Российской Федерации и муниципальных образований.

Специальные требования

на право технического руководства горными работами

Нефть и газ – это тоже горные породы, но не твердые, а жидкие и газообразные. Вместе с другими горючими осадочными породами (торф, бурый и каменный уголь, антрацит) они образуют семейство каустобиолитов, т.е. горючих органических пород.

Говоря о составе нефти, различают элементный, фракционный и групповой составы.

Основными ее элементами являются углерод (83…87%) и водород (11…14%). Наиболее часто встречающаяся примесь – сера (до 7%), хотя во многих нефтях серы практически нет. Сера содержится в нефтях в чистом виде (самородная), в виде сероводорода или меркаптанов. Она усиливает коррозию металлов. Азота в нефтях не больше 1,7%; он совершенно безвреден в силу своей инертности. Кислород встречается не в чистом виде, а в различных соединениях (кислоты, фенолы, эфиры и т.д.); его в нефти не более 3,6%. Из металлов присутствуют железо, магний, алюминий, медь, натрий, олово, кобальт, хром, германий, ванадий, никель, ртуть и другие. Содержание металлов столь мало, что они обнаруживаются лишь в золе, остающейся после сжигания нефти.

Фракционный состав нефти определяется при разделении соединений по температуре кипения. Фракцией (дистиллятом) называется доля нефти, выкипающая в определенном интервале температур. Началом кипения фракции считают температуру падения первой капли сконденсировавшихся паров; концом кипения – температуру, при которой испарение фракции прекращается. Так, бензины выкипают в пределах 35…205°С, керосины – 150…315, дизельные топлива – 180…350, масла – 350 и выше.

Под групповым составом нефти понимают количественное соотношение в ней отдельных групп углеводородов и соединений.
Схема газонефтяной пластовой залежи (Слайд 11)








Структурная карта – изображение в горизонталях рельефа кровли или подошвы продуктивного пласта.
Геологический разрез – изображение геологического строения данного участка земной коры в вертикальной плоскости.

Наличие структурных карт и геологических разрезов дает более наглядное представление о строении недр, позволяет более обоснованно и успешно осуществлять бурении скважин.
Бурение – это процесс сооружения скважины путем разрушения горных пород.

Скважиной называют горную выработку круглого сечения, сооружаемую без доступа в нее людей, у которой длина во много раз больше диаметра.

Верхняя часть скважины называется устьем, дно – забоем, боковая поверхность – стенкой, а пространство, ограниченное стенкой, - стволом скважины. Длина скважины – это расстояние от устья до забоя по оси ствола, а глубина – проекция длины на вертикальную ось. Длина и глубина численно равны только для вертикальных скважин. Однако они не совпадают у наклонных и искривленных скважин.

Физика продуктивного пласта

Под геолого-промысловой характеристикой продуктивного пласта понимают сведения о его гранулометрическом составе, коллекторских и механических свойствах, насыщенности нефтью, газом и водой.

Гранулометрический состав горной породы характеризует количественное содержание в ней частиц различной крупности. От гранулометрического состава зависят коллекторские свойства пласта: пористость, проницаемость, удельная поверхность пористой среды.

Способность пород вмещать воду, а также жидкие и газообразные углеводороды определяется их пористостью, т.е. наличием в них пустот (пор).

Удельной поверхностью породы называется суммарная площадь поверхности частиц, приходящаяся на единицу объема образца. От величины удельной поверхности нефтеносных пород зависят их проницаемость, содержание остаточной (связанной) воды и нефти.

Упругость пласта – это его способность изменять свой объем при изменении давления. До начала разработки продуктивный пласт находится под давлением, создаваемым весом вышележащих пород (горное давление), и противодействующим ему давлением пластовых флюидов (нефти, воды, газа), насыщающих пласт.

Нефтенасыщенность (газо- или водонасыщенность) характеризует запасы нефти (газа или воды) в пласте. Количественно ее оценивают величиной коэффициента нефтенасыщенности (газо- или водонасыщенности), который находится как доля объема пор, заполненных нефтью (газом или водой).
Условия залегания нефти, газа и воды в продуктивных пластах

Жидкости и газы находятся в пласте под давлением, называемым пластовым. Давление, существовавшее в пласте до начала разработки, называют начальным пластовым.

В зависимости от давления и температуры, а также ее состава смесь углеводородов в пластовых условиях может находиться в различных состояниях: жидком, газообразном или двухфазном (газожидкостная смесь). Как правило, в жидком состоянии смесь находится, когда в ней преобладают тяжелые углеводороды, пластовое давление велико, а пластовая температура относительно мала. Такие месторождения называются нефтяными.

При высоком давлении в пласте (вблизи критической точки на фазовой диаграмме) плотность газовой фазы приближается к плотности легких углеводородных жидкостей. В этих условиях в сжатом газе растворяются значительные количества углеводородной жидкости, подобно тому как в бензине растворяется нефтяной битум. Такие месторождения называются газоконденсатными.
Физические свойства пластовых флюидов

В газонефтяных месторождениях под действием высокого давления часть газа растворена в нефти и пластовой воде. Количество газа, растворенного в нефти, характеризуется величиной газового фактора, под которым понимается объем газа, выделяющегося из пластовой нефти при снижении давления до атмосферного, отнесенный к 1м3 или 1т дегазированной нефти.

Давление, ниже которого начинается выделение растворенного в нефти газа, называется давлением насыщения. Его определяют по моменту появления первых газовых пузырьков в однородной до этого жидкой фазе.

Основными параметрами нефти, конденсата, газа и воды в пластовых условиях являются вязкость, плотность и параметры, которые влияют на изменение объема фаз – сжимаемость, объемный коэффициент.

Вязкость – это свойство жидкости или газа оказывать сопротивление перемещению одних ее (его) частиц относительно других.

Различают динамическую, кинематическую и условную вязкость. Динамическую вязкость определяют на основе обработки кривых течения сред. Кинематическая вязкость – отношение динамической вязкости жидкости (газа) к ее (его) плотности. Условная вязкость – отношение времени истечения такого же объема дистиллированной воды при 20°С.

Вязкость пластовой воды существенно отличается от вязкости поверхностной (дегазированной) нефти, поскольку она содержит растворенный газ и находится в условиях повышенных давлений и температур. Минимальная величина вязкости имеет место, когда давление в пласте становится равным пластовому давлению насыщения – максимально возможному давлению, при котором для смеси заданного состава возможно установление полного фазового равновесия в условиях пласта. Последующий рост вязкости при дальнейшем увеличении давления обусловлен тем, что количество растворенного в нефти газа больше не увеличивается, а она продолжает сжиматься.
Режимы работы залежей (Слайд 15, 16)

В зависимости от источника пластовой энергии, обуславливающего перемещение нефти по пласту к скважинам, различают пять основных режимов работы залежей: жестководонапорный, упруговодонапорный, газонапорный, режим растворенного газа и гравитационный.








К искусственным методам воздействия на нефтяной пласт и призабойную зону относятся:

  1. Методы поддержания пластового давления

  2. Методы, повышающие проницаемость пласта

  3. Методы повышения нефтеотдачи пласта


Методы поддержания пластового давления

Метод законтурного заводнения применяют при разработке сравнительно небольших по размерам залежей. Он заключается в закачке воды в пласт через нагнетательные скважины, размещаемые за внешним контуром нефтеносности на расстоянии 100 м и более. Эксплуатационные скважины располагаются внутри контура нефтеносности параллельно контуру.

Метод приконтурного заводнения применяют на месторождениях с низкой проницаемостью продуктивных пластов в части, заполненной водой. Поэтому нагнетательные скважины располагают либо вблизи контура нефтеносности, либо непосредственно на нем.

Метод внутриконтурного заводнения применяется для интенсификации разработки нефтяной залежи, занимающей значительную площадь. Сущность этого метода заключается в искусственном «разрезании» месторождения на отдельные участки, для каждого из которых осуществляется нечто подобное законтурному заводнению.

Для поддержания пластового давления применяют также метод закачки газа в газовую шапку нефтяного пласта.
Методы повышения проницаемости пласта и призабойной зоны

Для увеличения проницаемости пласта и призабойной зоны применяют механические, химические и физические методы.

К механическим методам относятся гидравлический разрыв пласта (ГРП), гидропескоструйная перфорация (ГПП) и торпедирование скважин.

Гидроразрыв пласта производится путем закачки под давлением до 60 МПа нефти, пресной или минерализованной воды, нефтепродуктов (мазут, керосин, дизельное топливо) и других жидкостей.

Гидропескоструйная перфорация – это процесс создания отверстий в стенках эксплуатационной колонны, цементном камне и горной породе для сообщения продуктивного пласта со стволом скважины за счет энергии песчано-жидкостной струи, истекающей из насадок специального устройства (перфоратора).

Торпедированием называется воздействие на призабойную зону пласта взрывом. Для этого в скважине напротив продуктивного пласта помещают соответствующий заряд взрывчатого вещества (тротил, гексоген, нитроглицерин, динамиты) и подрывают его. При взрыве торпеды образуется мощная ударная волна, которая проходит через скважинную жидкость, достигает стенок эксплуатационной колонны, наносит сильный удар и вызывает растрескивание отложений (солей, парафина и др.).

К химическим методам воздействия на призабойную зону относятся обработки кислотами, ПАВ, химреагентами и органическими растворителями.

Кислотные обработки осуществляются соляной, плавиковой, уксусной, серной и угольной кислотами.


Пакер

При гидравлическом разрыве пласта устанавливают пакер, который полностью разобщает призабойную зону скважины от ее вышележащей части.

Основные его функции:

  1. Защищает обсадную колонну от воздействия пластового давления

  2. Предназначен для отсечения призабойной зоны скважины от надпакерной зоны при проведении глушения скважины перед ремонтными работами и промывками глубинно-насосного оборудования при работе скважины

  3. Исключает фильтрацию технологических жидкостей в призабойную зону пласта


Пакеры можно классифицировать по способу установки их в скважине, деформации уплотнительного элемента от перепада давлений, который пакер воспринимает, а также по способу спуска пакера в скважину.

По способу установки в скважине различаются пакеры с опорой на забой и пакеры без опоры на забой.

Пакер с опорой на забой спускают в скважину с хвостовиком. Преимущество этих пакеров — простота и надежность конструкций и легкость уплотнения в скважине. Однако для установки пакера необходимо иметь твердый забой, а также дополнительные трубы для хвостовой опоры. При использовании этих пакеров образование песчаных пробок на забое осложнений не вызывает.

По способу деформации уплотнительного элемента и герметизации колонны пакеры делятся на механические и гидравлические.

У механических пакеров уплотнительный элемент срабатывает от воздействия на него веса колонны труб. Преимущество этих пакеров — простота конструкции и высокая надежность в работе.

К недостаткам следует отнести необходимость обязательно нагружать их весом труб, что не всегда возможно (например, при небольших глубинах спуска пакера).

У гидравлических пакеров резиновый элемент деформируется и герметизирует колонну под действием давления, создаваемого нагнетаемой жидкостью. Эти пакеры способны воспринимать перепады до 50 МПа и более. Однако конструкция этих пакеров сложнее конструкции механических, что является их недостатком.
Методы повышения нефтеотдачи пластов

Для повышения нефтеотдачи пласта существуют следующие методы:

  • закачка в пласт воды, обработанной ПАВ;

  • вытеснение нефти растворами полимеров;

  • закачка в пласт углекислоты;

  • нагнетание в пласт теплоносителя;

  • внутрипластовое горение;

  • вытеснение нефти из пласта растворителями.


При закачке в нефтяной пласт воды, обработанной ПАВ, снижается поверхностное натяжение на границе нефть-вода, что способствует дроблению глобул нефти и образованию маловязкой эмульсии типа «нефть в воде», для перемещения которой необходимы меньшие перепады давления. Одновременно резко снижается и поверхностное натяжение на границе нефти с породой, благодаря чему она более полно вытесняется из пор и смывается с поверхности породы.

При вытеснении нефти водой нередки случаи, когда вследствие различия вязкостей жидкостей или разной проницаемости отдельных участков имеет место опережающее продвижение вытесняющего агента по локальным зонам пласта. Это приводит к недостаточно полному вытеснению нефти. Вытеснение нефти растворами полимеров, т.е. водой с искусственно повышенной вязкостью, создает условия для более равномерного продвижения водонефтяного контакта и повышения конечной нефтеотдачи пласта. Для загущения воды применяются различные водорастворимые полимеры, из которых наиболее широкое применение нашли полиакриламиды. Роль полимеров могут выполнять также пены, приготовленные на аэрированной воде с добавкой 0,2-1% пенообразующих веществ. Вязкость пены в 5-10 раз больше вязкости воды, что и обеспечивает большую полноту вытеснения нефти.

При закачке в пласт углекислоты происходит ее растворение в нефти, что сопровождается уменьшением вязкости последней и соответствующим притока к эксплуатационной скважине.

Нагнетание в пласт теплоносителя (горячей воды или пара с температурой до 400°С) позволяет значительно снизить вязкость и увеличить ее подвижность, способствует растворению в нефти выпавших из нее асфальтенов, смол и парафинов.

Метод внутрипластового горения заключается в том, что после зажигания тем или иным способом нефти у забоя нагнетательной (зажигательной) скважины в пласте создается движущийся очаг горения за счет постоянного нагнетания с поверхности воздуха или смеси воздуха с природным газом. Образующиеся впереди фронта горения пары нефти, а также нагретая нефть с пониженной вязкостью движутся к эксплуатационным скважинам и извлекаются через них на поверхность.

При вытеснении нефти из пласта растворителями в качестве вытесняющей фазы используются растворимые в нефти сжиженные пропан, бутан, смесь пропана с бутаном. В пласте они смешиваются с нефтью, уменьшая ее вязкость, что ведет к увеличению скорости фильтрации.
1   2   3   4   5   6   7   8


написать администратору сайта