Главная страница
Навигация по странице:

  • Технология Token Ring

  • Технология FDDI

  • Технология Wi - Fi .

  • Как работает

  • Технологии локальных сетей 1. Технологии локальных сетей


    Скачать 466.65 Kb.
    НазваниеТехнологии локальных сетей
    Дата21.06.2021
    Размер466.65 Kb.
    Формат файлаdocx
    Имя файлаТехнологии локальных сетей 1.docx
    ТипДокументы
    #219952

    Материал изучил

    ТЕХНОЛОГИИ ЛОКАЛЬНЫХ СЕТЕЙ

    Технология Ethernet
    В стандарте Ethernet (в том числе Fast Ethernet и Gigabit Ethernet) используется один и тот же метод разделения среды передачи данных ‑ метод CSMA/CD.

    Он определяет множественный доступ к моноканалу типа шина с обнаружением конфликтов и контролем передачи.

    Каждый ПК работает в Ethernet согласно принципу  «Слушай канал передачи, перед тем как отправить сообщения; слушай, когда отправляешь; прекрати работу в случае помех и попытайся еще раз».

    Данный принцип можно расшифровать (объяснить) следующим образом:

    1.  Никому не разрешается посылать сообщения в то время, когда этим занят уже кто-то  другой ( слушай перед тем, как отправить).

    2.  Если два или несколько отправителей начинают посылать сообщения примерно в один и тот же момент, рано или поздно их сообщения «столкнутся» друг с другом в канале связи, что называется коллизией.

    Коллизии нетрудно распознать, поскольку они всегда вызывают сигнал помехи, который не похож на допустимое сообщение. Ethernet  может распознать помехи и заставляет отправителя  приостановить передачу и подождать некоторое время, прежде, чем повторно отправить сообщение.




    На рисунке ниже приведена временная диаграмма, иллюстрирующая метод доступа CSMA/CD в сети с равноправными устройствами.

    Все подключенные устройства (рабочие станции) постоянно прослушивают общий канал связи (шину), чтобы:

    • определить состояние канала – занят или свободен, и

    • скопировать кадр, передаваемый по шине, в приемный буфер, если кадр адресован данному устройству сети.

    Станция может начать передачу кадра, если канал свободен. Если канал занят, передача кадра откладывается. Начав передачу, станция продолжает контролировать состояние канала, сравнивая вид отправленного сигнала с тем, который присутствует в канале связи. При обнаружении конфликта (коллизии) станции, участвующие в коллизии, должны прекратить передачу. Станция имеет право сделать следующую попытку передать кадр через случайный промежуток времени.

    Конфликты являются нормальным, хотя и нежелательным явлением в сетях с множественным (коллективным) доступом к общей среде передачи.



    Технология Token Ring

    Сети Token Ring, как и сети Ethernet, характеризует разделяемая среда передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо [5]. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером, или токеном (token) [3].

    Технология Token Ring был разработана компанией IBM в 1984 году, а затем передана в качестве проекта стандарта в комитет IEЕЕ 802, который на ее основе принял в 1985 году стандарт 802.5.

    Каждый ПК работает в Token Ring согласно принципу «Ждать маркера, если необходимо послать сообщение, присоединить его к маркеру, когда он будет проходить мимо. Если проходит маркер, снять с него сообщение и отправить маркер дальше».

    Сети Token Ring работают с двумя битовыми скоростями ‑ 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

    Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры ‑ посланный кадр всегда возвращается в станцию-отправитель.



    Рис. 3.10. Принцип технологии TOKEN RING

    В некоторых случаях обнаруженные ошибки в работе сети устраняются автоматически, например, может быть восстановлен потерянный маркер. В других случаях ошибки только фиксируются, а их устранение выполняется вручную обслуживающим персоналом.

    Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса. Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Сеть Token Ring может включать до 260 узлов.

    Концентратор Token Ring может быть активным или пассивным. Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключаемые к этим портам, образовали кольцо. Ни усиление сигналов, ни их ресинхронизацию пассивный MSAU не выполняет.

    Активный концентратор выполняет функции регенерации сигналов, и поэтому иногда называется повторителем, как в стандарте Ethernet.

    В общем случае сеть Token Ring имеет комбинированную звездно-кольцевую конфигурацию. Конечные узлы подключаются к MSAU по топологии звезды, а сами MSAU объединяются через специальные порты Ring In (RI) и Ring Out (RO) для образования магистрального физического кольца.

    Все станции в кольце должны работать на одной скорости либо 4 Мбит/с, либо 16 Мбит/с. Кабели, соединяющие станцию с концентратором, называются ответвительными (lobe cable), а кабели, соединяющие концентраторы, – магистральными (trunk cable).

    Технология Token Ring позволяет использовать для соединения конечных станций и концентраторов различные типы кабеля:

    – STP Type 1 ‑ экранированная витая пара (Shielded Twistedpair).
    В кольцо допускается объединять до 260 станций при длине ответвительных кабелей до 100 метров;

    – UTP Туре 3, UTP Туре 6 ‑ неэкранированная витая пара (Unshielded Twistedpair). Максимальное количество станций сокращается до 72 при длине ответвительных кабелей до 45 метров;

    – волоконно-оптический кабель.

    Расстояние между пассивными MSAU может достигать 100 м при использовании кабеля STP Туре 1 и 45 м при использовании кабеля UTP Type 3. Между активными MSAU максимальное расстояние увеличивается соответственно до 730 м или 365 м в зависимости от типа кабеля.

    Максимальная длина кольца Token Ring составляет 4000 м. Ограничения на максимальную длину кольца и количество станций в кольце в технологии Token Ring не являются такими жесткими, как в технологии Ethernet. Здесь эти ограничения в основном связаны со временем оборота маркера по кольцу.
    Технология FDDI

    За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 (Token-Ring). Несущественные отличия от этого стандарта определяются необходимостью обеспечить высокую скорость передачи информации на большие расстояния. Топология сети FDDI – это кольцо, наиболее подходящая топология для оптоволоконного кабеля. В сети применяется два разнонаправленных оптоволоконных кабеля, один из которых обычно находится в резерве, однако такое решение позволяет использовать и полнодуплексную передачу информации (одновременно в двух направлениях) с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с). Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо (как в Token-Ring).

    Основные технические характеристики сети FDDI.

    • Максимальное количество абонентов сети – 1000.

    • Максимальная протяженность кольца сети – 20 километров.

    • Максимальное расстояние между абонентами сети – 2 километра.

    • Среда передачи – многомодовый оптоволоконный кабель (возможно применение электрической витой пары).

    • Метод доступа – маркерный.

    • Скорость передачи информации – 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

    Стандарт FDDI имеет значительные преимущества по сравнению со всеми рассмотренными ранее сетями. Например, сеть Fast Ethernet, имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети. К тому же маркерный метод доступа FDDI обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки.

    Ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ). Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца – 200 километров.

    Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов:

    • Абоненты (станции) класса А (абоненты двойного подключения, DAS – Dual-Attachment Stations) подключаются к обоим (внутреннему и внешнему) кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или резервирования кабеля сети (при повреждении основного кабеля используется резервный). Аппаратура этого класса применяется в самых критичных с точки зрения быстродействия частях сети.

    • Абоненты (станции) класса В (абоненты одинарного подключения, SAS – Single-Attachment Stations) подключаются только к одному (внешнему) кольцу сети. Они более простые и дешевые, по сравнению с адаптерами класса А, но не имеют их возможностей. В сеть они могут включаться только через концентратор или обходной коммутатор, отключающий их в случае аварии.

    Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети используются связные концентраторы (Wiring Concentrators), включение которых позволяет собрать в одно место все точки подключения с целью контроля работы сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары) концентратор выполняет также функцию преобразования электрических сигналов в оптические и наоборот. Концентраторы также бывают двойного подключения (DAC – Dual-Attachment Concentrator) и одинарного подключения (SAC – Single-Attachment Concentrator).[3]




    Пример конфигурации сети FDDI
    Стандарт FDDI предусматривает также возможность реконфигурации сети с целью сохранения ее работоспособности в случае повреждения кабеля.

    В отличие от метода доступа, предлагаемого стандартом IEEE 802.5, в FDDI применяется так называемая множественная передача маркера. Если в случае сети Token-Ring новый (свободный) маркер передается абонентом только после возвращения к нему его пакета, то в FDDI новый маркер передается абонентом сразу же после окончания передачи им пакета (подобно тому, как это делается при методе ETR в сети Token-Ring). Последовательность действий здесь следующая:

    1. Абонент, желающий передавать, ждет маркера, который идет за каждым пакетом.

    2. Когда маркер пришел, абонент удаляет его из сети и передает свой пакет. Таким образом, в сети может быть одновременно несколько пакетов, но только один маркер.

    3. Сразу после передачи своего пакета абонент посылает новый маркер.

    4. Абонент-получатель, которому адресован пакет, копирует его из сети и, сделав пометку в поле статуса пакета, отправляет его дальше по кольцу.

    5. Получив обратно по кольцу свой пакет, абонент уничтожает его. В поле статуса пакета он имеет информацию о том, были ли ошибки, и получил ли пакет приемник.

    В сети FDDI не используется система приоритетов и резервирования, как в Token-Ring. Но предусмотрен механизм адаптивного планирования нагрузки.

    В заключение следует отметить, что несмотря на очевидные преимущества FDDI данная сеть не получила широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры (порядка нескольких сот и даже тысяч долларов). Основная область применения FDDI сейчас – это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI также для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена. Предполагается, что сеть Fast Ethernet может потеснить FDDI, однако преимущества оптоволоконного кабеля, маркерного метода управления и рекордный допустимый размер сети ставят в настоящее время FDDI вне конкуренции. А в тех случаях, когда стоимость аппаратуры имеет решающее значение, можно на некритичных участках применять версию FDDI на основе витой пары (TPDDI). К тому же стоимость аппаратуры FDDI может сильно уменьшится с ростом объема ее выпуска.[2]

    Технология Wi-Fi.

    После 10-летия развития появился стандарт IEEE 802.22, поддерживающий передачу данных на расстояния до 100 км по прямой. На 2019 год разработано 18 стандартов IEEE 802.11 с разной пропускной способностью и рабочими частотами.

    Термин «Wi-Fi» является намёком на Hi-Fi, и никак не расшифровывается. Однако, принято считать, что слово происходит от Wireless Fidelity – беспроводная точность.

    Про работу беспроводной технологии в формате видео:

    Как работает?



    Wi-Fi – это беспроводная технология передачи данных, беспроводная локальная сеть (WLAN). В принцип работы Wi-Fi положена передача зашифрованных сигналов посредством СВЧ-волн (сверхвысокочастотные волны) на небольшие (десятки метров) расстояния. Схема сети состоит минимум из двух элементов: точка доступа и клиент.

    Есть схемы клиент-клиент – без применения точек доступа.

    Точка доступа транслирует идентификатор (SSID, имя сети) посредством спецпакетов данных 10 раз в секунду со скоростью 100 Кбит/с. Это теоретически наименьшая пропускная способность беспроводного канала.

    Как устроена работа Вай-Фай сети? При попадании в зону действия и обнаружении сигнала устройство-клиент делает вывод о возможности подключения к ней (разность технологий может стать тому помехой). Передатчик может и не передавать свой идентификатор, тогда сеть будет невидимой для клиентов. Подключиться к ней можно только посредством ввода SSID и пароля, если она защищена.

    При наличии в одной зоне 2-3 сетей с идентичными SSID, устройство-приёмник подключается к той, у которой лучше сигнал.

    Точкой доступа в домашних Wi-Fi сетях является преимущественно беспроводной маршрутизатор – роутер. Он и клиенты должны работать в одном режиме (частота, модуляция сигнала). Рассмотрим на примере раздачи интернета в частном доме.



    Роутер получает трафик через сетевой кабель, преобразовывает его в радиоволны и распространяет их «по воздуху» в виде радиосигналов сверхвысокой частоты с определёнными параметрами. Приёмник «ловит» эти волны и декодирует их (расшифровывает, извлекает из них информацию, которая кодируется несущей частотой).

    Алгоритмы «упаковки» данных описаны в соответствующих стандартах и отличаются от версии к версии. Аналогичным образом осуществляется и передача цифровых данных. Принцип Wi-Fi технологии схож с работой мобильной связи, если не вдаваться в технические подробности


    написать администратору сайта