Главная страница

Теоретические вопросы к экзамену mathematical anlaysis. Теоретические вопросы определение предела последовательности. Подпоследовательность, частичный предел


Скачать 225.45 Kb.
НазваниеТеоретические вопросы определение предела последовательности. Подпоследовательность, частичный предел
Дата07.04.2022
Размер225.45 Kb.
Формат файлаpdf
Имя файлаТеоретические вопросы к экзамену mathematical anlaysis.pdf
ТипДокументы
#452296

ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ
1. Определение предела последовательности. Подпоследовательность, частичный предел.
2. Критерий Коши. Свойства сходящихся последовательностей. Теорема о пределе промежуточной последовательности.
3. Определение предела функции. Теорема о пределе промежуточной функции. Первый замечательный предел.
4. Бесконечно малые функции. Теорема о связи бесконечно малых и бесконечно больших функций.
5. Теорема о пределе произведения бесконечно малой и ограниченной функций.
6. Второй замечательный предел. Раскрытие неопределенностей 0 0
, ∞
0
, 1

7. Сравнение бесконечно малых. Эквивалентность бесконечно малых.
Основные эквивалентности.
8. Теорема о разности эквивалентных бесконечно малых. Теорема о замене эквивалентности в пределе отношения.
9. Непрерывность функции в точке. Теорема о непрерывности арифметических действий, о непрерывности сложной функции.
10. Непрерывность функции на отрезке. Свойства функций, непрерывных на отрезке.
11. Точки разрыва и их классификация.
12. Производная, ее геометрический и механический смысл.
13. Теорема о связи непрерывности и дифференцируемости.
14. Арифметические действия с производными.
15. Таблица производных.
16. Производные сложной и обратной функций.
17. Дифференциал, его связь с производной, геометрический смысл, инвариантность.
18. Теорема Ролля, ее геометрический смысл.
19. Теорема Лагранжа, ее геометрический смысл. Теорема Коши.
20. Правило Лопиталя.
21. Многочлен Тейлора, формула Тейлора.

22. Остаточный член формулы Тейлора в формах Пеано и Лагранжа.
23. Локальный экстремум функции одного переменного. Необходимое и достаточное условия экстремума.
24. Геометрический смысл второй производной. Точки перегиба.
25. Асимптоты графика функции. Существование наклонной асимптоты.
26. Частные производные функции нескольких переменных. Теорема о равенстве смешанных производных.
27. Дифференцируемостъ функции нескольких переменных. Дифференциал.
28. Локальный экстремум функции нескольких переменных. Необходимое условие экстремума.


написать администратору сайта