Реферат по материаловедению. Термическая, термохимическая и термомеханическая обработка стали
Скачать 1.9 Mb.
|
Кинетика мартенситного превращения. Мартенситное превращение в общем случае не удается подавить быстрым охлаждением, как это может быть при диффузионных превращениях. При переохлаждении до температуры, соответствующей точке Мн, аустенит начинает превращаться в мартенсит. Следовательно, температура, отвечающая точке Мн, соответствует началу мартенситного превращения. Чтобы мартенситное превращение развивалось, необходимо непрерывно охлаждать сталь ниже температуры Мн. Если охлаждение прекратить, то мартенситное превращение практически также остановится. Эта особенность мартенситного превращения резко отличает его от диффузионного перлитного, которое полностью протекает в изотермических условиях при температуре ниже точки А1. Зависимость количества образовавшегося мартенсита от температуры, до которой охлажден образец, может быть выражена так называемой мартенситной кривой (рис. 119). Чем ниже температура, тем больше образуется мартенсита. Количество мартенсита при этом возрастает в результате образования все новых и новых кристаллов, а не вследствие роста уже возникших кристаллов, имеющих некогерентную границу. По достижении определенной для каждой стали температуры превращение аустенита в мартенсит прекращается. Эту температуру окончания мартенситного превращения обозначают Мк. Положение точек Мк и Мн не зависит от скорости охлаждения и обусловлено химическим составом аустенита. Чем больше в аустените углерода, тем ниже температура точек Мк и Мн. Все легирующие элементы, растворенные в аустените, за исключением кобальта и алюминия, понижают точки Мк и Мн. Мартенситное превращение очень чувствительно к напряжениям, а деформация аустенита может вызывать превращение даже при температурах выше Мн (мартенсит деформации). Кристаллы мартенсита в зависимости от состава стали, а следовательно, и от температуры своего образования могут иметь различные морфологию и субструктуру. Различают два типа мартенсита - пластинчатый и реечный (рис. 121). Пластинчатый мартенсит образуется в высокоуглеродистых сталях, характеризующихся низкой температурой мартенситной точки (см. рис. 119, 120). В этом случае кристаллы мартенсита состоят в средней своей части из большого числа микродвойников, образующих среднюю зону повышенной травимости, называемую нередко мидрибом (рис. 121). На рис. 118, б приведена микроструктура такого мартенсита. Его кристаллы представляют собой широкие пластины. В плоскости шлифа они имеют вид игл. Наиболее часто (конструкционные углеродистые и легированные стали) кристаллы мартенсита имеют форму тонких реек (реечный мартенсит), вытянутых в одном направлении (см. рис. 118, в, 121). Чаще образуется и наблюдается пакет из реек (см. рис. 121). Такой высокотемпературный мартенсит называют массивным, в отличие от игольчатого (см. рис. 118). Тонкая структура реечного мартенсита сложна и представляет собой запутанные дислокации высокой плотности (⁓1012 см-2) при отсутствии двойниковых кристаллов. В легированных сталях нередко внутри мартенситных пакетов между кристаллами мартенсита сохраняются прослойки остаточного аустенита (см. рис. 118, в и г и 121, б). Размеры кристаллов любой морфологии мартенсита определяются величиной исходного зерна аустенита. Они тем крупнее, чем больше зерно аустенита. Первая пластина мартенсита имеет протяженность, соответствующую поперечному размеру зерна аустенита. Кристаллы, образующиеся при более низких температурах, стеснены в своем развитии и имеют меньшие размеры (см. рис. 121). 1.6 Превращение в закаленных сталях при отпуске Отпуск заключается в нагреве закаленной стали, структура которой состоит из тетрагонального мартенсита и остаточного аустенита, до температур ниже Ас1, выдержке при этой температуре и последующем охлаждении. Так как мартенсит представляет собой перенасыщенный твердый раствор углерода в Feα то структура закаленной стали является нестабильной и при отпуске протекают процессы, приводящие к равновесному состоянию стали, что, очевидно, будет достигаться выделением углерода из мартенсита и остаточного аустенита. Дилатометрические исследования процессов, протекающих при отпуске закаленной углеродистой стали выявляют три температурных интервала изменения длины образцов: уменьшение при 150 °С, увеличение при 150-300 °С и снова уменьшение длины при 300-400 °С (рис. 218). С дилатометрическими данными коррелируют результаты измерения электросопротивления, магнитной индукции и других свойств. Соответствующие превращения при отпуске называются первым, вторым и третьим. Так как исходной является структура, состоящая из мартенсита и аустенита, а удельный объем мартенсита выше, чем у аустенита, то при превращении мартенсита объем будет уменьшаться (сжатие образца), а при превращении аустенита — увеличиваться (расширение образца). Таким образом первое и третье превращения связаны с изменениями состояния мартенсита, а второе — с изменением состояния аустенита. Большую роль в выяснении сущности процессов, протекающих при отпуске, играют рентгеноструктурные исследования. Было установлено, что первое превращение связано с распадом мартенсита, второе с распадом остаточного аустенита и третье с дораспадом мартенсита и карбидообразованием (рис. 219). Дальнейшие исследования, проведенные с привлечением самых разнообразных методов исследования показали, что деление процессов, протекающих при отпуске на три стадии довольно условно; кроме того, в температурные интервалы значительные поправки могут вносить легирующие элементы. Игольчатый характер строения мартенсита сохраняется до высоких температур и только при продолжительном отпуске при 650 °С вместо игольчатой мартенситной структуры наблюдаются равновесные мелкие ферритные зерна. Дальнейшее повышение температуры приводит к процессам возврата (преимущественно уменьшению плотности дислокаций) в феррите и рекристаллизации ферритных зерен. Сталь, отпущенная при 350 - 500 °С, имеет структуру троостита (рис. 220, а), а при 500 - 600 °С — структуру сорбита (рис. 220, б). Эти структуры представляющие собой смесь цементита и феррита, различаются по твердости и степени дисперсности цементитных частиц. |