Главная страница

Реферат по материаловедению. Термическая, термохимическая и термомеханическая обработка стали


Скачать 1.9 Mb.
НазваниеТермическая, термохимическая и термомеханическая обработка стали
Дата22.12.2019
Размер1.9 Mb.
Формат файлаdocx
Имя файлаРеферат по материаловедению.docx
ТипРеферат
#101539
страница2 из 8
1   2   3   4   5   6   7   8


Величину зерна определяют при стократном увеличении методом сравнения со стандартной шкалой. Для определения зернистости сталь должна быть нагрета до температуры 930 °С. Если при этой температуре номер зерна 1—4, то это сталь наследственно крупнозернистая. Стали, у которых номер зерна 5 — 8 и более, — наследственно мелкозернистые. Легирующие элементы (ванадий, вольфрам, молибден, титан и др.) способствуют образованию наследственно мелкозернистой макроструктуры. Такая сталь при высоких температурах хорошо поддается любому виду обработки деформированием (прокатка, ковка, штамповка и др.). Укрупнения зерна и снижения механических свойств при этом не происходит. Как правило, большинство легированных сталей, а также спокойные стали — наследственно мелкозернистые. Все кипящие стали — наследственно крупнозернистые, имеют низкую ударную вязкость и высокую хладноломкость.
1.2 Превращения при охлаждении

При охлаждении сталей с аустенитной структурой могут происходить различные превращения, зависящие от скорости охлаждения. Рассмотрим диаграмму изотермического превращения аустенита в перлит (рис. 6.3).



Кривые превращения аустенита имеют С-образную характеристику и показывают, что скорость превращений неодинакова. Максимальная скорость превращения соответствует охлаждению ниже Ас1, (727˚С) на 170˚С. Кривые начала и конца превращений смещены вправо и соответствуют наибольшей устойчивости.

Левая кривая на диаграмме соответствует границе начала превращений, правая кривая показывает конец превращения аустенита. Превращение аустенита в перлит носит диффузионный характер.

Скорость диффузии зависит от степени переохлаждения или от скорости охлаждения. Продукты перлитного превращения имеют пластинчатое строение, определены как перлит, сорбит и троостит и различаются степенью дисперсности. Но если перлит— это равновесная структура, то сорбит и троостит— неравновесные структуры, в них содержание углерода больше или меньше 0,8%. Существует еще промежуточное (бейнитное) превращение в области температур 500...350˚С. При большей степени переохлаждения (до 230 ˚С) аустенит находится в неустойчивом состоянии, диффузионные процессы отсутствуют, образуется перенасыщенный углеродом твердый раствор.

Мартенситное превращение в стали имеет три особенности. Во- первых, мартенситное превращение имеет бездиффузионный характер. Во-вторых, кристаллы мартенсита ориентированы. Третья особенность заключается в том, что мартенситное превращение происходит при непрерывном охлаждении в интервале определенных температур для каждой стали. Температуру начала мартенситного превращения называют мартенситной точкой и обозначают Мн, а температуру окончания обозначают Мк. Положение точек Мн и Мк на диаграмме зависит от количества углерода в стали и присутствия легирующих элементов. Как правило, большое содержание углерода и наличие легирующих элементов понижают положение точек.

Наложим на диаграмму графики скоростей охлаждения и изобразим схему влияния скорости охлаждения на температуру превращений аустенита. Из диаграмм видим, что чем больше скорость охлаждения, тем дисперснее получаемая структура. При небольшой скорости v1, образуется перлит, при большей скорости v2сорбит и еще большей vкр — троостит. При скорости охлаждения, большей, чем vкр, часть аустенита превращается в мартенсит. Минимальная скорость охлаждения, при которой весь аустенит переохлаждается до точки Мн и превращается в мартенсит, называется критической скоростью закалки. Этот процесс превращения в мартенсит имеет большое практическое значение и положен в основу термической обработки.

Перлитное превращение в стали применяют в процессе отжига; мартенситное — при закалке; промежуточное — при изотермической закачке.

Механические свойства стали со структурами перлита, сорбита и троостита зависят от степени понижения температуры распада и дисперсности ферритно-цементитной структуры. При этом твердость, пределы прочности, текучести и выносливости возрастают.

Структура мартенсита имеет более высокую твердость и прочность, а также зависит от содержания углерода в стали. Отрицательным фактором мартенситной структуры является повышенная хрупкость. Как уже говорилось, легирующие элементы влияют на положение точек Мн и Мк и соответственно влияют на практическую скорость закачки, обычно в сторону уменьшения.

1.3 Перлитное превращение

Перлитное превращение переохлажденного аустенита протекает при температурах Ar1 - 500˚C (см. рис. 112). В процессе превращения происходит полиморфное γ → α - превращение и диффузионное перераспределение углерода в аустените, что приводит к образованию ферритно-цементитной структуры:





Аустенит, практически однородный по концентрации углерода, распадается с образованием феррита (почти чистое железо) и цементита, содержащего 6,67 % C, т. е. состоит из фаз, имеющих различную концентрацию углерода (рис. 113). Ведущей, в первую очередь возникающей фазой при этом является карбид (цементит). Его зародыши, как правило, образуются на границах зерен аустенита.



В результате роста частиц этого карбида прилегающий к нему объем аустенита обедняется углеродом, снижает свою устойчивость и испытывает полиморфное γ → α - превращение. При этом кристаллики феррита зарождаются на границе с цементитом, который облегчает этот процесс.

Последующий рост ферритных пластинок ведет к обогащению окружающего аустенита углеродом, что затрудняет дальнейшее развитие γ → α - превращения. В обогащенном таким образом углеродом аустените зарождаются новые и растут ранее возникшие пластинки цементита. Вследствие этих процессов образования и роста частиц карбидов вновь создаются условия для возникновения новых и роста имеющихся кристалликов (пластинок) феррита. В результате происходит колониальный (совместный) рост кристалликов феррита и цементита, образующих перлитную колонию (рис. 113).

Продукты перлитного превращения имеют пластинчатое строение. Пластинчатые структуры эвтектоидного типа часто определяют как перлит, сорбит и троостит или соответственно грубо-, средне- и тонкодифференцированный перлит. Чем больше переохлаждение, тем тоньше получается ферритно-цементитная структура, т. е. меньше межпластинчатое расстояние ∆0 (рис. 113), равное усредненной сумме толщин двух пластинок феррита и цементита, и выше твердость:



Перлит, сорбит и троостит, образующиеся при диффузионном распаде переохлажденного аустенита, являются ферритно-цементитными структурами, имеющими пластинчатое строение и различающимися лишь степенью дисперсности (рис. 114).



Однако в отличие от перлита (эвтектоида) сорбит и троостит, называемые квазиэвтектоидными, не являются равновесными структурами в сталях, не соответствующих эвтектоидному составу (содержат углерода больше или меньше 0,8 %).

1   2   3   4   5   6   7   8


написать администратору сайта