Статистика 2. задание 2 статистика. В целях изучения стажа рабочих завода проведена 36%ная механическая выборка, в результате которой получено следующее распределение рабочих по стажу работы
Скачать 181.48 Kb.
|
Статистика Практическое задание 2 Задание 1 В целях изучения стажа рабочих завода проведена 36%-ная механическая выборка, в результате которой получено следующее распределение рабочих по стажу работы: Стаж, число лет Число рабочих, чел. до 5 12 5 -10 18 10 -15 24 15 -20 32 20 -25 6 свыше 25 8 Итого 100 На основе этих данных вычислите: • Средний стаж рабочих завода. • Моду и медиану стажа рабочих. • Средний квадрат отклонений (дисперсию), среднее квадратическое отклонение и коэффициент вариации. • С вероятностью 0.997 предельную ошибку выборочной средней и возможные границы , в которых ожидается средний стаж рабочих всего завода. Решение. 1. Для того чтобы вычислить среднее значение признака перейдем от интервального ряда к дискретному, т.е. найдем середину каждого интервала как полусумму нижней и верхней границ. При этом величина открытого интервала первой группы приравнивается к величине интервала второй группы, а величина открытого интервала последней группы – к величине интервала предпоследней группы. Для удобства вычислений составляем таблицу. Стаж, число лет Середины интервалов Xi ' fi X ' ifi X '2ifi до 5 2,5 12 30 75 5-10 7,5 18 135 1012,5 10-15 12,5 24 300 3750 15-20 17,5 32 560 9800 20-25 22,5 6 135 3037,5 25 и выше 27,5 8 220 6050 ИТОГО: 100 1380 23725 Найдем средний стаж: 𝑋= ∑ 𝑋𝑖 ′ ⋅𝑓 ∑ 𝑓𝑖 =1380/100=13,8 лет. 2. Найдем моду Мо и медиану Ме: Мо=ХМо + iМо 𝑓𝛭𝛰 −𝑓𝛭𝛰−1 (𝑓𝛭𝛰 −𝑓𝛭𝛰−1)+(𝑓𝛭𝛰 −𝑓𝛭𝛰+1) = 15 + 5 ⋅ 32−24 (32−24)+(32−6) = 16,18лет fM0,fM0-1,fM+1 –частоты модального ,до и после модального интервалов соответственно ,ХМ0 – начало модального интервала. iМО- величина модального интервала. Мода показывает варианту наиболее часто встречающегося в данной совокупности, т.е. наиболее часто встречающийся стаж рабочих в данной совокупности равен 16,18% Ме=ХМе + iМе 0.5⋅∑ 𝑓−𝑆𝛭𝑒𝑓𝛭𝑒 = 10 + 5 ⋅ 50−(12+18) 24 = 14,167лет ХМе- начало медианного интервала; iМе - величина медианного интервала ;SМе- сумма накопленных частот до медианного интервала: fМе – частота медианного интервала. Медиана – это варианта, располагающаяся в середине ранжированного ряда распределения. Вывод: половина рабочих имеет стаж до 14,167 лет, а вторая половина рабочих – более 14,167 лет. 3. Найдем дисперсию по следующей формуле: 2 𝜎 2 = Х 2 − (Х) 2 Х 2 = ∑ Х𝑖 2 ⋅𝑓𝑖𝑛 = 23725 100 = 237,25 𝜎 2 =237,25-13,82 =46,81 Дисперсия показывает среднее арифметическое квадратов отклонений каждого значения признака от средней арифметической. Среднее квадратическое отклонение находим по специальной формуле: 𝜎 = √𝜎 2= 6,84 лет Коэф. вариации 𝜈 = 𝜎𝛸⋅ 100%=(6,84/13,8)·100%=50% Когда относительные показатели вариации не превышают 35%, то принято считать, что полученные средние характеристики достаточно надежно характеризуют совокупность по варьирующему признаку. В нашем же случае, напротив, коэффициент вариации больше 35% -- не надежно, т.е. полученный средний стаж не надежно характеризует данную совокупность по этому признаку. Помощь на экзамене онлайн. 4. Из условия задачи имеем n/N=0,36, n = 100. На основе этих данных с вероятностью 0,954найдем предельную ошибку ( 𝛥𝑋 ) выборочной средней (𝑋) и возможные границы по следующим формулам 𝑋 = 𝛸 ± 𝛥𝑋 , где 𝛥𝑋= 𝑡 ⋅ √ 𝜎2 𝑛 (1 − 𝑛 𝑁 ) ---предельная ошибка выборочной средней. Так как р=0,997 то t=3 . 𝛥𝑋= 3 ⋅ √ 46,81 100 (1 − 0,36) = 1,64 года 13,8-1,64 𝑋 ≤13,8+1,64 12,16𝑋 ≤15,44 Итак с вероятностью р=0,997 можно утверждать, что границы генеральной среднего стажа находятся от 12,16 до 15,44 лет. |