РЕФЕРАТ ЛАПИН. Виды трансформаторов
Скачать 296.28 Kb.
|
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный энергетический университет им. В.И.Ленина» Кафедра Электромеханики ДИСЦИПЛИНА Электромеханические системы Реферат на тему: «ВИДЫ ТРАНСФОРМАТОРОВ» Выполнил:_________________________________ студент гр. Руфино Б. 3-35х Проверил:__________________________________________ Лапин А.Н. Иваново 2017 ВИДЫ ТРАНСФОРМАТОРОВ Трансформатором называется статическое электромагнитное устройство, содержащее от двух до нескольких обмоток, расположенных на общем магнитопроводе, и индуктивно связанных, таким образом, между собой. Служит трансформатор для преобразования электрической энергии переменного тока посредством электромагнитной индукции без изменения частоты тока. Используют трансформаторы, как для преобразования переменного напряжения, так и для гальванической развязки в различных сферах электротехники и электроники. Справедливости ради отметим, что в некоторых случаях трансформатор может содержать и всего одну обмотку (автотрансформатор), а сердечник может и вовсе отсутствовать (ВЧ — трансформатор), однако в большинстве своем трансформаторы имеют сердечник (магнитопровод) из магнитомягкого ферромагнитного материала, и две или более изолированные ленточные или проволочные обмотки, охватываемые общим магнитным потоком, но обо всем по порядку. Рассмотрим, какие же бывают виды трансформаторов, как они устроены и для чего применяются. Силовой трансформатор Данный вид низкочастотных (50-60 Гц) трансформаторов служит в электрических сетях, а также в установках приема и преобразования электрической энергии. Почему называется силовой? Потому что именно этот тип трансформаторов применяется для подачи и приема электроэнергии на ЛЭП и с ЛЭП, где напряжение может достигать 1150 кВ. В городских электросетях напряжение достигает 10 кВ. Посредством именно силовых низкочастотных трансформаторов напряжение также и понижается до 0,4 кВ, 380/220 вольт, необходимых потребителям. Конструктивно типичный силовой трансформатор может содержать две, три или более обмоток, расположенных на броневом сердечнике из электротехнической стали, причем некоторые из обмоток низшего напряжения могут питаться параллельно (трансформатор с расщепленными обмотками). Это удобно для повышения напряжения, получаемого одновременно с нескольких генераторов. Как правило, силовой трансформатор помещен в бак с трансформаторным маслом, а в случае особо мощных экземпляров добавляется система активного охлаждения. Трансформаторы силовые трехфазные мощностью до 4000 кВА устанавливаются на подстанциях и электростанциях. Более распространены трехфазные, поскольку потери получаются до 15% меньше, чем с тремя однофазными. Трансформатор сетевой Сетевые трансформаторы еще в 80-е и 90-е годы можно было встретить практически в любом электроприборе. С помощью именно сетевого трансформатора (обычно однофазного) напряжение бытовой сети 220 вольт с частотой 50 Гц понижается до уровня, требуемого электроприбору, например 5, 12, 24 или 48 вольт. Часто сетевые трансформаторы выполняются с несколькими вторичными обмотками, чтобы несколько источников напряжения можно было бы использовать для питания различных частей схемы. В частности, трансформаторы ТН (трансформатор накальный) всегда можно было (да и сейчас можно) встретить в схемах, где присутствовали радиолампы. Современные сетевые трансформаторы конструктивно выполняются на Ш-образных, стержневых или тороидальных сердечниках из набора пластин электротехнической стали, на которые и навиваются обмотки. Тороидальная форма магнитопровода позволяет получить более компактный трансформатор. Если сравнить трансформаторы равной габаритной мощности на тороидальном и на Ш-образном сердечниках, то тороидальный будет занимать меньше места, к тому же площадь поверхности тороидального магнитопровода полностью охватывается обмотками, нет пустого ярма, как в случае с броневым Ш-образным или стержневым сердечниками. К сетевым можно отнести в частности и сварочные трансформаторы мощностью до 6 кВт. Сетевые трансформаторы, конечно, относятся к низкочастотным трансформаторам. Автотрансформатор Одной из разновидностей низкочастотного трансформатора является автотрансформатор, у которого вторичная обмотка является частью первичной или первичная является частью вторичной. То есть в автотрансформаторе обмотки связаны не только магнитно, но и электрически. Несколько выводов делаются от единственной обмотки, и позволяют всего с одной обмотки получить различное напряжение. Главное преимущество автотрансформатора — меньшая стоимость, поскольку расходуется меньше провода для обмоток, меньше стали для сердечника, в итоге и вес получается меньше, чем у обычного трансформатора. Недостаток — отсутствие гальванической развязки обмоток. Автотрансформаторы находят применение в устройствах автоматического управления, а также широко используются в высоковольтных электросетях. Трехфазные автотрансформаторы с соединением обмоток в треугольник либо в звезду в электрических сетях весьма востребованы сегодня. Силовые автотрансформаторы выпускаются на мощности вплоть до сотен мегаватт. Применяют автотрансформаторы и для пуска мощных двигателей переменного тока. Автотрансформаторы особенно целесообразны при невысоких коэффициентах трансформации. Лабораторный автотрансформатор Частным случаем автотрансформатора является лабораторный автотрансформатор (ЛАТР). Он позволяет плавно регулировать напряжение, подаваемое к потребителю. Конструкция ЛАТРа представляет собой тороидальный трансформатор с единственной обмоткой, которая имеет неизолированную «дорожку» от витка к витку, то есть имеется возможность подключения к каждому из витков обмотки. Контакт с дорожкой обеспечивается скользящей угольной щеткой, которая управляется поворотной ручкой. Так можно получить на нагрузке действующее напряжение различной величины. Типичные однофазные ЛАТРы позволяют получать напряжение от 0 до 250 вольт, а трехфазные — от 0 до 450 вольт. ЛАТРы мощностью от 0,5 до 10 кВт очень популярны в лабораториях для целей наладки электрооборудования. Трансформатор тока Трансформатором тока называется трансформатор, первичная обмотка которого подключается к источнику тока, а вторичная — к защитным или измерительным приборам, имеющим малые внутренние сопротивления. Наиболее распространенным типом трансформатора тока является измерительный трансформатор тока. Первичная обмотка трансформатора тока (обычно — всего один виток, один провод) включается последовательно в цепь, в которой требуется измерить переменный ток. Получается в результате, что ток вторичной обмотки пропорционален току первичной, при этом вторичная обмотка обязательно должна быть нагружена, ибо иначе напряжение вторичной обмотки может получиться достаточно высоким, чтобы пробить изоляцию. Кроме того, если вторичную обмотку ТТ разомкнуть, то магнитопровод просто выгорит от наведенных некомпенсированных токов. Конструкция трансформатора тока представляет собой сердечник из шихтованной кремнистой холоднокатаной электротехнической стали, на который намотана одна или несколько изолированных обмоток, являющихся вторичными. Первичная обмотка зачастую — просто шина, либо пропущенный через окно магнитопровода провод с измеряемым током (на этом принципе, кстати, работают токоизмерительные клещи). Главная характеристика трансформатора тока — коэффициент трансформации, например 100/5 А. Для измерения тока и в схемах релейной защиты трансформаторы тока применяются достаточно широко. Они безопасны, поскольку измеряемая и вторичная цепи гальванически изолированы друг от друга. Обычно промышленные трансформаторы тока выпускаются с двумя или более группами вторичных обмоток, одна из которых подключается к защитным устройствам, другая — к устройству измерения, например к счетчикам. Импульсный трансформатор Почти во всех современных сетевых блоках питания, в разнообразных инверторах, в сварочных аппаратах, и в прочих силовых и маломощных электрических преобразователях применяются импульсные трансформаторы. Сегодня импульсные схемы почти полностью вытеснили тяжелые низкочастотные трансформаторы с сердечниками из шихтованной стали. Типичный импульсный трансформатор представляет собой трансформатор выполненный на ферритовом сердечнике. Форма сердечника (магнитопровода) может быть совершенно различной: кольцо, стержень, чашка, Ш-образный, П-образный. Преимущество ферритов перед трансформаторной сталью очевидно - трансформаторы на феррите могут работать на частотах до 500 и более кГц. Поскольку импульсный трансформатор является высокочастотным трансформатором, то и габариты его с ростом частоты значительно снижаются. На обмотки требуется меньше провода, а для получения высокочастотного тока в первичной цепи достаточно полевого, IGBT или биполярного транзистора, иногда — нескольких, в зависимости от топологии импульсной схемы питания (прямоходовая - 1, двухтактная - 2, полумостовая - 2, мостовая — 4). Справедливости ради отметим, что если применяется обратноходовая схема питания, то трансформатор по сути является сдвоенным дросселем, поскольку процессы накопления и отдачи электроэнергии во вторичную цепь разделены во времени, то есть они протекают не одновременно, поэтому при обратноходовой схеме управления это все же дроссель, а не трансформатор. Импульсные схемы с трансформаторами и дросселями на феррите встречаются сегодня всюду, начиная от балластов энергосберегающих ламп и зарядных устройств различных гаджетов, заканчивая сварочными аппаратами и мощными инверторами. Импульсный трансформатор тока Для измерения величины и (или) направления тока в импульсных схемах часто применяют импульсные трансформаторы тока, представляющие собой ферритовый сердечник, зачастую — кольцевой (тороидальный), с единственной обмоткой. Через кольцо сердечника продевают провод, ток в котором нужно исследовать, а саму обмотку нагружают на резистор. Например, кольцо содержит 1000 витков провода, тогда соотношение токов первичной (продетый провод) и вторичной обмотки будет 1000 к 1. Если обмотка кольца нагружена на резистор известного номинала, то измеренное напряжение на нем будет пропорционально току обмотки, а значит измеряемый ток в 1000 раз больше тока через этот резистор. Промышленностью выпускаются импульсные трансформаторы тока с различными коэффициентами трансформации. Разработчику остается только подключить к такому трансформатору резистор и схему измерения. Если требуется узнать направление тока, а не его величину, то обмотка трансформатора тока нагружается просто двумя встречными стабилитронами. |