Вопрос 1 Уравнение и характеристики механических свободных (затухающих и незатухающих) колебаний. Свободными (собственными) колебаниями
Скачать 1.52 Mb.
|
Вопрос №11 Вязкость жидкости уравнение Ньютона . При течении реальной жидкости отдельные слои ее воздействуют друг на друга ссилами, касательными к слоям. Это явление называют внутренним трением или вязкостью. Это уравнение Ньютона. Сила внутреннего трения , действующая между слоями жилкости площадью S. Здесь h — коэффициент пропорциональности, называемый коэффициентом внутреннего трения, или динамической вязкостью (или просто вязкостью). Вязкость зависит от состояния и молекулярных свойств жидкости (или газа). du/dx — градиента скорости (скорости сдвига) Единицей вязкости является паскалъ-секунда (Па • с). В системе СГС вязкость выражают в пуазах (П): 1 Па • с = 10 П. Для многих жидкостей вязкость не зависит от градиента скорости, такие жидкости подчиняются уравнению Ньютона (7.1), и их называют ньютоновскими. Жидкости, не подчиняющиеся уравнению (7.1), относят к неньютоновским. Иногда вязкость ньютоновских жидкостей называют нормальной, а неньютоновских — аномальной. Вопрос №12 Ньютоновские и неньютоновские жидкости. Кровь как неньютоновская жидкость. Ньютоновские жидкости – жидкости, вязкость которых не зависит от градиента скорости(т.е.вязкость постоянна).Это все низкомолекулярные в-ва в жидком состоянии, их смеси и истинные растворы в них низкомолекулярных в-в (вода, органич. жидкости, расплавл. металлы, соли и стекло при темп-ре выше темп-ры размягчения). Такие жидкости подчиняются уравнению Ньютона: Коэффициент пропорциональности η (греческая буква "эта") называют коэффициентом внутреннего трения или динамической вязкостью. Единицей динамической вязкости (или просто вязкости) в системе СИ является паскаль-секунда (Па·с) dv/dx – производная, называемая градиентом скорости. S – площадь взаимодействующих слоев Неньютоновские жидкости – вязкость которых зависит от градиента скорости (т.е.вязкость не постоянная) Они не подчиняются уравнению Ньютона. Это жидкости, состоящие из крупных и сложных молекул, например эмульсии, суспензии, пены и кровь.Такие жидкости содержат молекулы или частицы, склонные к образованию пространственных структур. Цельная кровь (суспензия эритроцитов в белковом растворе – плазме крови) в отличие от плазмы крови является неньютоновской жидкостью.Вязкость крови уменьшается с увеличением скорости v (или градиента скорости dv/dx) течения крови.Связано это с тем, что в неподвижной крови или при малых скоростях ее течения эритроциты склонны к агрегации (слипанию) и образуют структуры, напоминающие столбики монет ("монетные столбики"), что приводит к возрастанию вязкости. При увеличении скорости движения крови "монетные столбики" разрушаются, и вязкость крови снижается. При остановке движения крови, эритроциты быстро (примерно, за 1 с) вновь собираются в "монетные столбики". Вопрос №13 Течение вязкой жидкости по трубам формула Пуазейля Наибольшей скоростью обладает слой, текущий вдоль оси трубы. Здесь градиент скорости равен нулю и наблюдается самое малое трение. Примыкающий к стенке сосуда слой жидкости неподвижен В данных точках сосуда градиент скорости имеет максимальное значение и наблюдается самое большое трение. Закон Пуазейля (математическим выражением которого является формула Пуазейля) устанавливает зависимость между объемом жидкости, протекающим через трубу в единицу времени (расходом), длиной и радиусом трубы, и перепадом давления в ней. где: Q – объемная скорость, R – радиус сосуда, – динамическая вязкость, l – длина сосуда, p1 p2 – разность давлений на концах сосуда. Вопрос №14 Движение тел в вязкой жидкости. Закон Стокса. Вязкость проявляется при движении не только жидкости по сосудам, но и тел в жидкости. При небольших скоростях в соответствии с уравнением Ньютона сила сопротивления движущемуся телу пропорциональна вязкости жидкости, скорости движения тела и зависит от размеров тела. Так как невозможно указать общую формулу для силы сопротивления, ограничимся рассмотрением частного случая. Закон Стокса: Вопрос №15 МЕТОДЫ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ ЖИДКОСТИ.КЛИНИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ КРОВИ.ДИАГНОСТИЧЕСКОЕ ЗНАЧЕНИЕ ВЯЗКОСТИ КРОВИ Совокупность методов измерения вязкости называют вискозиметрией, а приборы, используемые для таких целей, — вискозиметрами. Рассмотрим наиболее распространенные методы вискозиметрии. Капиллярный метод основан на формуле Пуазейля и заключается в измерении времени протекания через капилляр жидкости известной массы под действием силы тяжести при определенном' перепаде давлений. Капиллярный вискозиметр применяется для определения вязкости. Капиллярными вискозиметрами измеряют вязкость от значений 10-5 Па • с, свойственных газам, до значений 104 Па • с, характерных для консистентных смазок. Метод падающего шарика используется в вискозиметрах, основанных на законе Стокса. Из формулы находим Таким образом, зная величины, входящие в правую часть этой формулы, и измеряя скорость равномерного падения шарика, можно найти вязкость данной жидкости. Применяются также ротационные вискозиметры, в которых жидкость находится в зазоре между двумя соосными телами, например цилиндрами. Один из цилиндров (ротор) вращается, а другой неподвижен. Вязкость измеряется по угловой скорости ротора, создающего определенный момент силы на неподвижном цилиндре, или по моменту силы, действующему на неподвижный цилиндр, при заданной угловой скорости вращения ротора. С помощью ротационных вискозиметров определяют вязкость жидкостей в интервале 1—105 Па • с, т. е. смазочных масел, расплавленных силикатов и металлов, высоковязких лаков и клеев, глинистых растворов и т. п. В ротационных вискозиметрах можно менять градиент скорости, задавая разные угловые скорости вращения ротора. Это позволяет измерять вязкость при разных градиентах и установить зависимость η = f(dv/dx), которая характерна для неньютоновских жидкостей. В настоящее время в клинике для определения вязкости крови используют вискозиметр Гесса с двумя капиллярами В вискозиметре Гесса объем крови всегда одинаков, а объем воды отсчитывают по делениям на трубке 1, поэтому непосредственно получают значение относительной вязкости крови. Для удобства втсчета сечения трубок 1 и 2 делают различными так, что, несмотря на разные объемы крови и воды, их уровни в трубках будут примерно одинаковы. Вязкость крови человека в норме 4—5 мПа • спри патологии колеблется от 1,7 до 22,9 мПа * с, что сказывается на скорости оседания эритроцитов (СОЭ). Венозная кровь обладает несколько большей вязкостью, чем артериальная. При тяжелой физической работе увеличивается вязкость крови. Некоторые инфекционные заболевания увеличивают вязкость крови, другие же, например брюшной тиф и туберкулез, — уменьшают. Вопрос № 16 Условие неразрывности струи, уравнение Бернулли Условие неразрывности струи: при стационарном течении несжимаемой жидкости через любые сечения трубки тока каждую секунду протекают одинаковые объемы жидкости, равные произведению площади сечения на среднюю скорость движения ее частиц. Уравнение (7.1) выражает условие неразрывности струи. Оно устанавливает соотношение между скоростями течения жидкости в различных сечениях трубки тока:
Уравнение Бернулли Уравнение Бернулли формулируется следующим образом: При стационарном течении идеальной жидкости полное давление, равное сумме статического, динамического и гидростатического давлений, одинаково во всех поперечных сечениях трубки тока. Вопрос №17 Турбулентное течение. Число Рейнольдса Увеличение скорости течения вязкой жидкости вследствие неоднородности давления по поперечному сечению создает завихрения и движение становится вихревым(турбулентным) Скорость движения частиц хаотично изменяется Характер течения жидкости по трубе зависит от: 1) Св-в жидкости 2)Скорости течения 3) Размеров трубы И определяется числом рейнольдса: Если число Re>Re(критического),то движение турбулентное Физический смысл ч.Рейнольдса 1)Когда Re<<1,можно сказать,чтовяские силы преобладают,а инерционные пренебрежно малы например: на уровне микрососудов(сосуды диаметром порядка 100 мкм)типичные числа Рейнольдса меньше единицы и течение можно рассматривать как чисто вязкое 2) Когда Re>>1 преобладают инерционные силы,а вязкость лишь незначительно изменяет характер течения например: кровь в крупных артериях,венах Вопрос №18 Природа сил поверхностного натяжения. Поверхностно активные вещества, их роль в биологических процессах. Между любыми молекулами в жидкости существует притяжение. Если молекула расположена в объеме жидкости, то силы притяжения, действующие на нее со стороны окружающих молекул (а силы - это векторы) взаимно компенсируются, и равнодействующая равна нулю. Если молекула расположена на поверхности жидкости, то равнодействующая сил притяжения со стороны других молекул жидкости не равна нулю, и она направлена внутрь объема. Сила поверхностного натяжения, это сила, обусловленная взаимным притяжением молекул жидкости, направленная по касательной к ее поверхности.стремится уменьшить площадь поверхности жидкости, например капли воды. Пове́рхностно- акти́вные вещества́ (ПАВ) — химические соединения, которые, концентрируясь на поверхности раздела термодинамических фаз, вызывают снижение поверхностного натяжения. Кроме того, они играют важную роль в биологических процессах и вырабатываются для «собственных нужд» живыми организмами. Так, поверхностной активностью обладают вещества, входящие в состав жидкостей кишечно-желудочного тракта и крови животных, соков и экстрактов растений. Вопрос №19 Методы определения коэффициента поверхностного натяжения. метод. 1.Капиллярный метод. Метод основан на использовании соотношения 2. Метод Ребиндера (метод определения максимального давления в пузырьке). 3. Сталагмометрический метод (метод счета капель). Вопрос №20 Смачивание и несмачивание.Мениски, формула Лапласа. Смачивание— явление, возникающее вследствие взаимодействия молекул жидкости с молекулами твердых тел. Если силы притяжения между молекулами жидкости и твердого тела больше сил притяжения между молекулами жидкости, то жидкость называют смачивающей; если силы притяжения жидкости и твердого тела меньше сил притяжения между молекулами жидкости, то жидкость называют несмачивающейэто тело. Искревление поверхности (МЕНИСК) в часности возникает в узких (капиллярных) трубках в результате смачивания или несмачивания жидкостью их поверхности.при смачивание образуется вогнутый мениск.Силы давления направлены от жидкости наружу, т.е. вверх, и о00бусловливают подем жидкости в капилляр.Высота поднятия жидкости в капилляре зависит от свойств жидкости и материала и радиуса капилляра. h = 2σ / ρgR Формула Лапласа p1-p2=α(1/R1+1/R2) определяет поверхностное давлние .Если R1 иR2 положитльны то р1>p2.Это значит что из 2-х тел давление больше в том,поверхность которого выпукла.ЕслиR1=R2 то давление в обоих телах одинаковы. Вопрос №21 Капиллярные явления. Эмболия С поверхностным натяжением связано и явление газовой эмболии, при котором пузырек газа способен затруднить и даже остановить кровоток в мелких сосудах и лишить кровоснабжения какой-либо орган, что может привести к серьезному функциональному расстройству и даже летальному исходу. Поэтому рассмотрим подробнее поведение пузырька воздуха, находящегося в капилляре с жидкостью. Пока диаметр газового пузырька меньше диаметра сосуда, он имеет сферическую форму и движется вместе с током крови. Если он попадает в мелкий сосуд, диаметр которого меньше диаметра пузырька, его мениски деформируются под действием динамического давления текущей крови: передний по току крови мениск вытягивается, его радиус кривизны уменьшается, а задний под напором крови уплощается, его радиус кривизны увеличивается. Таким образом, попавшие в кровь пузырьки воздуха способны закупорить мелкие сосуды. Воздушная эмболия может возникнуть при ранении крупных вен, где давление крови ниже атмосферного, при неправильно проведенных внутривенных инъекциях и в других ситуациях. Вопрос №22 Реологические свойства крови Реология крови (гемореология) занимается изучением деформации и текучести крови. Главным фактором, оказывающим влияние на вязкость крови, является концентрация эритроцитов, которая называется гематокритом. Вязкость крови также зависит от температуры, а также определяется составом белков. Главное значение для оценки свойств крови имеет ее агрегационное состояние. Основные методы измерения свойств крови осуществляются с помощью вискозиметров различных типов: используются приборы, работающие по методу стокса, а также по принципу регистрации электрических, механических, акустических колебаний; ротационные реометры, капиллярные вискозиметры. Применение реологической техники позволяет изучить биохимические и биофизические свойства крови с целью управления микрорегуляцией при метаболических и гемодинамических расстройствах. Вопрос№23 модели кровообращения (механическая,электрическая) В качестве механической модели можно рассматривать замкнутую систему из множества разветвленных горизонтальных трубок с эластичными стенками, движение жидкости в которых происходит под действием ритмически работающего поршня насоса. Электрической моделью сердца может быть представленная на рисунке электрическая схема. Генератор электрического напряжения (ГЕН) служит аналогом мышечного источника энергии сердца. Диод (Д) — выпрямитель — аналог аортального клапана. Конденсатор (С) накапливает заряд, а затем разряжается на сопротивление R(x). Роль конденсатора играет аорта, a R(x) периферическая сосудистая система, ее гидравлическое сопротивление X, L характеризует инерционные свойства электрической цепи, что является аналогом массы ударного объема крови. Вопрос №24 Понятие пульсовой волны, зависимость скорости пульсовой волны от параметров сосуда . Распространяющуюся по аорте и артериям волну повышенного давления, вызванную выбросом крови из левого желудочка в период систолы, называют пульсовой волной. Пульсовая волна распространяется со скоростью 5—10 м/с и даже более. Следовательно, за время систолы (около 0,3 с) она должна распространиться на расстояние 1,5—3 м, что больше расстояния от сердца к конечностям. Это означает, что начало пульсовой волны достигнет конечностей раньше, чем начнется спад давления в аорте. Скорость пульсовой волны в крупных сосудах следующим образом зависит от их параметров (формула Моенса—Кортевега): где Е — модуль упругости, r — плотность вещества сосуда, h — толщина стенки сосуда, d — диаметр сосуда. Вопрос №25 Особенности гемодинамики в магистральных, резистивных, капиллярных и венозных сосудах. Различают несколько видов сосудов: Магистральные – наиболее крупные артерии, в которых ритмически пульсирующий кровоток превращается в более равномерный и плавный. Стенки этих сосудов содержат мало гладкомышечных элементов и много эластических волокон. Резистивные (сосуды сопротивления) – включают в себя прекапиллярные (мелкие артерии, артериолы) и посткапиллярные (венулы и мелкие вены) сосуды сопротивления. Соотношение между тонусом пре- и посткапиллярных сосудов определяет уровень гидростатического давления в капиллярах, величину фильтрационного давления и интенсивность обмена жидкости. Истинные капилляры (обменные сосуды) – важнейший отдел ССС. Через тонкие стенки капилляров происходит обмен между кровью и тканями. Емкостные сосуды – венозный отдел ССС. Они вмещают около 70-80% всей крови. Основной гемодинамический закон: количество крови, протекающей в единицу времени через кровеносную систему тем больше, чем больше разность давления в ее артериальном и венозном концах и чем меньше сопротивление току крови. Значение эластичности сосудистых стенок состоит в том, что они обеспечивают переход прерывистого, пульсирующего (в результате сокращения желудочков) тока крови в постоянный. Это сглаживает резкие колебания давления, что способствует бесперебойному снабжению органов и тканей. Особенности кровотока в венах. В венах давление крови низкое. Движению крови по венам способствует ряд факторов: Работа сердца создает разность давления крови в артериальной системе и правом предсердии. Это обеспечивает венозный возврат крови к сердцу. Наличие в венах клапанов способствует движению крови в одном направлении – к сердцу. Отрицательное внутригрудное давление, особенно в фазу вдоха, способствует венозному возврату крови к сердцу. Вопрос №26 методы определения скорости кровотока В работе проведён анализ известных методов измерения скорости кровотока. Ниже приведены результаты анализа — название метода и определяемая скорость кровотока: Ультразвуковой метод (ультразвуковая расходометрия)основан на эффекте Доплера. Здесь сравниваются колебания, соответствующие падающей и отраженной волнам, и выделяется доплеровский сдвиг частоты в виде электрического колебания: Электромагнитный метод (электромагнитная расходоме-трия)измерения скорости кровотока основан на отклонении движущихся зарядов в магнитном поле. Дело в том, что кровь, будучи электрически нейтральной системой, состоит из поло-жительных и отрицательных ионов. Вопрос №27,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Физические основы клинического метода измерения давления крови. Физический параметр - давление крови, играет большую роль в диагностике многих заболеваний. Для измерения систолического и диастолического давления крови в медицине широко используется метод, предложенный Н.С. Коротковым. В основе метода лежит определение систолического давления по возникновению характерных тонов и шумов, в момент начала прохождения крови по сосудам при достижении давления в сдавливающей манжете равного максимальному значению давления в сосуде. Тоны и шумы возникают в связи с турбулентным течением крови. Диастолическое давление определяют по моменту исчезновения характерных тонов и шумов, в связи с переходом течения крови в сосуде из турбулентного в ламинарное. Вокруг руки между плечом и локтем накладывают манжетку. Вопрос №28 Насосная функция сердца Единственной функцией сердца является обеспечение энергией, которая необходима для циркуляции крови в сердечно-сосудистой систем.е. Кровоток через все органы тела осуществляется пассивно и происходит только благодаря тому, что при осуществлении насосной деятельности сердца артериальное давление поддерживается на более высоком уровне, чем венозное Насос правого сердца создает энергетический импульс, необходимый для передвижения крови через сосуды легких, а насос левого сердца обеспечивает необходимую энергию для перемещения крови через органы тела. Путь крови через камеры сердца указан на рис. 2-1. Венозная кровь возвращается из органов тела в правое предсердие через верхнюю и нижнюю полые вены. Вопрос №29 РАБОТА И МОЩНОСТЬ СЕРДЦА, ЭНЕРГИЯ МАССЫ ДВИЖУЩЕЙСЯ КРОВИ Работа, совершаемая сердцем, затрачивается на преодоление сил давления и сообщение крови кинетической энергии. Цикл работы сердца Здоровое сердце ритмично и без перерывов сжимается и разжимается. В одном цикле работы сердца различают три фазы: Наполненные кровью предсердия сокращаются. При этом кровь через открытые клапаны нагнетается в желудочки сердца (они в это время остаются в состоянии расслабления). Сокращение предсердий начинается с места впадения в него вен, поэтому устья их сжаты и попасть назад в вены кровь не может. Происходит сокращение желудочков с одновременным расслаблением предсердий. Трёхстворчатые и двустворчатые клапаны, отделяющие предсердия от желудочков, поднимаются, захлопываются и препятствуют возврату крови в предсердия, а аортальный и лёгочный клапаны открываются. Сокращение желудочков нагнетает кровь в аорту и лёгочную артерию. Пауза (диастола) короткий период отдыха этого органа. Во время паузы из вен кровь попадает в предсердия и частично стекает в желудочки. Когда начнётся новый цикл, оставшаяся в предсердиях кровь будет вытолкнута в желудочки — цикл повторится. Один цикл работы сердца длится около 0,85 сек., из которых на время сокращения предсердий приходится только 0,11 сек., на время сокращения желудочков 0,32 сек., и самый длинный — период отдыха, продолжающийся 0,4 сек. Сердце взрослого человека, находящегося в покое, работает в системе около 70 циклов в минуту. Автоматизм сердца
Регуляция работы сердца Работа сердца регулируется при помощи миогенных, нервных и гуморальных механизмов. Нервная система регулирует частоту и силу сердечных сокращений: (симпатическая нервная система обуславливает усиление сокращений, парасимпатическая — ослабляет). Вопрос №30 Напряженность и потенциал характеристики эл.поля Силовой характеристикой электрического поля является напряженность, равная отношению силы, действующей в данной точке поля на точечный заряд, к этому заряду Напряженность-вектор ,направление которого совпадает с направлением силы,действующец в данной точке поля на положительный точечный заряд Работа сил электростатического поля (электрического поля неподвижных зарядов) не зависит от траектории, по которой перемещается заряд в этом поле. Поля, обладающие таким свойством, называют потенциальными. Напряжённость— векторная величина определяющая силу действующую на заряженную частицу или тело со стороныэлектрического поля и численно равная отношению силы к заряду частицы. Е = F/Q-+ Электрическое напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля. U = A/q Потенциал (φ)— это энергетическая характеристика поля численно равная отношению потенциальной энергии заряженной частицы помещенной в данной точке поля величине её заряда. φ = W/Q Вопрос №31 Электрический диполь Э лектрический диполь — система двух равных по модулю разноименных точечных зарядов ( ), расстояние между которыми значительно меньше расстояния до рассматриваемых точек поля. (два статических заряда, отстоящих на некотором расстоянии друг от друга.) Плечо диполя — вектор , направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между зарядами.. Вопрос №32 Понятие о мультиполе. Мультипо́ли — определённые конфигурации точечных источников (зарядов). Простейшими примерами мультиполя служат точечный заряд — мультиполь нулевого порядка; два противоположных по знаку заряда, равных по абсолютной величине — диполь, или мультиполь 1-го порядка; 4 одинаковых по абсолютной величине заряда, размещённых в вершинах параллелограмма, так что каждая его сторона соединяет заряды противоположного знака (или два одинаковых, но противоположно направленных диполя) — квадруполь, или мультиполь 2-го порядка. Название мультиполь включает обозначение числа зарядов (на греческом языке), образующих мультиполь, например, октуполь (окту — 8) означает, что в состав мультиполя входит 8 зарядов. Вопрос №33 33Дипольный Электрический генератор(токовый диполь) Электрический диполь - система из двух равных по величине, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга. Двухполюсная система в проводящей среде, состоящая из истока и стока тока, называется дипольным электрическим генератором или токовым диполем. Тогда сила тока определяется законом Ома: где:R - сопротивление проводящей среды, в которой находятся электроды; r - внутреннее сопротивление источника, ε - его э.д.с.; положительный электрод Электрической характеристикой токового диполя является векторная величина, называемая дипольным моментом (РT). Дипольный момент токового диполя - вектор, направленный от стока(-) к истоку (+) и численно равный произведению силы тока на плечо диполя: Вопрос №34 Физические основы электрокардиографии. Живые ткани являются источником электрических потенциалов (биопотенциалов). Регистрация биопотенциалов тканей и органов с диагностической целью получила название электрографии. Такой общий термин употребляется сравнительно редко, более распространены конкретные названия соответствующих диагностических методов: электрокардиография (ЭКГ) – регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении. В большинстве случаев биопотенциалы снимаются электродами не непосредственно с органа (сердца, головного мозга), а с других, соседних тканей, в которых электрические поля этим органом создаются. По терминологии физиологов, разность биопотенциалов, регистрируемую между двумя точками тела, называют отведением. Различают I отведение (правая рука – левая рука), II отведение (правая рука – левая нога) и III отведение (левая рука – левая нога). Вопрос №35 Диэлектрики в электрическом поле Диэлектрики это вещества, у которых электроны внешних оболочек атома не могут свободно перемещаться по объему диэлектрика под действием сколь угодно малого внешнего поля. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей В зависимости от химического строения диэлектрики можно разделить на три группы: 1. Неполярные диэлектрики. К ним относятся такие диэлектрики ( парафин, бензол), у которых центры сосредоточения положительных и отрицательных зарядов совпадают. 2. Полярные диэлектрики К ним относятся такие диэлектрики, у которых центры сосредоточения положительных и отрицательных зарядов не совпадают. 3. Ионные диэлектрики. К ионным диэлектрикам относятся вещества, имеющие ионную структуру. К ним относятся соли или щелочи: NaCl, KCl, и т.д. Вопрос №36 Пьезоэлектрический эффект Пьезоэлектри́ческий— (давлю, сжимаю) — эффект возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект). Существует и обратный пьезоэлектрический эффект — возникновение механических деформаций под действием электрического поля. Прямой пьезоэффект используется: в датчиках: в качестве чувствительного элемента в микрофонах, гидрофонах, головках звукоснимателя электрофонов, приёмных элементов сонаров; Обратный пьезоэлектрический эффект используется: в акустических излучателях: в пьезокерамических излучателях звука (эффективны на высоких частотах и имеют небольшие габариты; такие например встраиваются в музыкальные открытки, различные оповещатели, Вопрос №37 энергия электрического поля Система зарядов или заряженных тел, заряженный конденсатор обладают энергией. В этом можно убедиться, разряжая, например, конденсатор через лампочку, присоединенную к нему: лампочка вспыхнет. Вопрос №38 Электропроводимость электролитов Биологические жидкости являются электролитами, электропроводимость которых имеет сходство с электропроводимостью металлов: в обеих средах в отличие от газов носители тока существуют независимо от электрического поля. Вопрос №39 электропроводимость биологических тканей и жидкостей для постоянного тока Биологические ткани и органы являются довольно разнородными образованиями с различными электрическими сопротивлениями, которые могут изменяться при действии электрического тока. Это обусловливает трудности измерения электрического сопротивления живых биологических систем. Электропроводимость отдельных участков организма, находящихся между электродами, наложенными непосредственно на поверхность тела, существенно зависит от сопротивления кожи и подкожных слоев. Внутри организма ток распространяется в основном по кровеносным и лимфатическим сосудам, мышцам, оболочкам нервных стволов. Сопротивление кожи в свою очередь определяется ее состоянием: толщиной, возрастом, влажностью и т. п. Электропроводимость тканей и органов зависит от их функционального состояния и, следовательно, может быть использована как диагностический показатель. Вопрос №40 Электрический разряд в газах. Газ, состоящий только из нейтральных частиц, является диэлектриком(изолятором). Если его ионизировать, то он становится электропроводным. Любое устройство, явление, фактор, способный вызвать ионизацию молекул и атомов газа, называют ионизатором. Им может быть свет, пламя, рентгеновское излучение, ионизирующие излучение и пр. Ионизационный потенциал: Вопрос №41 .МАГНИТНОЕ ПОЛЕ Магнитным полем называют вид материи, посредством которой осуществляется силовое воздействие на движущиеся электрические заряды, помещенные в поле, и другие тела, обладающие магнитным моментом. Магнитное поле есть одна из форм проявления электромагнитного поля. Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам). Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током. Сила, действующая на проводник с током называется силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды. Вопрос №42 Основные характеристики магнитного поля Магнитное поле это силовое поле, основным свойством которого является способность воздействовать на движущиеся электрические заряды (в т. ч. на проводники с током) , а также на магнитные тела независимо от состояния их движения. Источниками магнитного поля могут быть движущиеся электрические заряды (проводники с током) , намагниченные тела и изменяющиеся во времени электрические поля. Основная количественная характеристика магнитного поля – магнитная индукция В, которая определяет силу, действующую в данной точке поля в вакууме на движущийся электрический заряд и на тела, имеющие магнитный момент.
Магнитная индукция B — это векторная величина определяющая силу действующую на заряженную частицу со стороны магнитного поля. Измеряется в теслах Тл. µ — относительная магнитная проницаемость — табличная величина (для вакуума = 1) Магнитный поток Ф — скалярная физическая величина числено равная произведению магнитной индукции на площадь поверхности ограниченной замкнутым контуром. Измеряется в веберах Вб. Магнитный поток рассчитывается по формуле: Φmax= B · S Вопрос №43 Закон Ампера Закон Ампера — закон взаимодействия постоянных токов. Из закона следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположном — отталкиваются. где: B – магнитная индукция; I – сила тока; L – длина участка проводника; sinВ – синус угла между вектором магнитной индукции и проводником. Вопрос №44 Действие магнитного поля на движущийся электрический заряд. Сила Лоренса Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца. Она перпендикулярна векторам магнитной индукции и скорости упорядоченного движения заряженных частиц. Ее направление определяется с помощью того же правила левой руки, что и направление силы Ампера. Fл = q * v * B * sin(a) где q - заряд частицы; V - скорость заряда; B - индукции магнитного поля; a - угол между вектором скорости заряда и вектором магнитной индукции. Вопрос №45 Магнитные свойства вещества. Постоянные магниты могут быть изготовлены лишь из сравнительно немногих веществ, но все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами становятся источниками магнитного поля. Магнитные свойства вещества определяют по тому, как эти вещества реагируют на внешнее магнитное поле и каким образом упорядочена их внутренняя структура. Существует три основных класса веществ с резко различающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики. Вещества, у которых, подобно железу, μ≫1 - ферромагнетиками. Важнейшее свойство ферромагнетиков существование у них остаточного магнетизма. Из ферромагнетиков изготавливают постоянные магниты. Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле- парамагнитными. Магнитная проницаемость парамагнетиков зависит от температуры и уменьшается при ее увеличении. Без намагничивающего поля парамагнетики не создают собственного магнитного поля. Постоянных парамагнетиков нет. Диамагнетики−вещества, которые выталкиваются из магнитного поля. Магнитная проницаемость практически не зависит от индукции намагничивающего поля и от температуры. При вынесении диамагнетика из внешнего намагничивающего поля он полностью размагничивается и магнитного поля не создает. Вопрос №46 Магнитные свойства тканей организма. Ткани организма в значительной степени диамагнитны, подобно воде. Однако в организме имеются и парамагнитные вещества, молекулы и ионы. Магнетизм биологических объектов,т.е их магнитные мвойства и магнитны поля, создоваемые ими, получили название биомагнетизм. Биотоки, возникающие в организме, являются источником слабых магнитных полей. В некоторых случаях индукцию таких полей удается измерить. Так, например, на основании регистрации временной зависимости индукции магнитного поля сердца (биотоков сердца) создан диагностический метод - магнитокардиографня. Магнитное поле оказывает воздействие на биологические системы, которые в нем находятся. Это воздействие изучает раздел биофизики, называемый магнитобиологией. Вопрос №47 Магнитные свойства вещества Магнитные поля создаются либо постоянными магнитами, либо токами. Постоянные магниты могут быть изготовлены лишь из сравнительно немногих веществ, но все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами становятся источниками магнитного поля. Магнитные свойства вещества определяют по тому, как эти вещества реагируют на внешнее магнитное поле и каким образом упорядочена их внутренняя структура. Существует три основных класса веществ с резко различающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики. Вещества, у которых, подобно железу, μ≫1 - ферромагнетиками. Важнейшее свойство ферромагнетиков существование у них остаточного магнетизма. Из ферромагнетиков изготавливают постоянные магниты. Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле- парамагнитными. Магнитная проницаемость парамагнетиков зависит от температуры и уменьшается при ее увеличении. Без намагничивающего поля парамагнетики не создают собственного магнитного поля. Постоянных парамагнетиков нет. Диамагнетики−вещества, которые выталкиваются из магнитного поля. Магнитная проницаемость практически не зависит от индукции намагничивающего поля и от температуры. При вынесении диамагнетика из внешнего намагничивающего поля он полностью размагничивается и магнитного поля не создает. Вопрос №48 Электромагнитные колебания и волны Электромагнитными колебаниями называются периодические изменения напряженности Е ииндукции В. Электромагнитными колебаниями являются радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, гамма-лучи. Электромагнитные колебания возникают в колебательном контуре, состоящем из конденсатора и катушки индуктивности, присоединённой к обкладкам конденсатора. Процесс распространения электромагнитных колебаний (электромагнитного поля) в пространстве С течением времени называют электромагнитной волной.. Скорость распространения электромагнитной волны в среде зависит от электрических и магнитных свойств этой среды Свойства электромагнитных волн: распространяются прямолинейно,отражаются, преломляются, поглощаются. Вопрос №49 Свободные электромагнитные колебания В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Свободные электромагнитные колебания– это периодически повторяющиеся изменения электромагнитных величин (q– электрический заряд,I– сила тока,U– разность потенциалов), происходящие без потребления энергии от внешних источников. Простейшей электрической системой, способной совершать свободные колебания, является колебательный контур. Колебательный контур –это система, состоящая из последовательно соединенных конденсатора емкостиC, катушки индуктивностиLи проводника с сопротивлениемR Вопрос №50 Переменный ток Переме́нный ток (англ. alternatingcurrent) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным[1]. Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока. Максимальное мгновенное значение переменного тока, которое он достигает в процессе своего изменения, называется амплитудой тока . Вопрос №51 Полное сопротивление в цепи переменного тока. Введем понятие полного сопротивления цепи переменному току - Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока Вопрос №52 |