Главная страница
Навигация по странице:

  • Каталог

  • Файловая система

  • Путь к файлу

  • Основные файловые системы, применяемые в современных ОС.

  • Физическая организация памяти компьютера

  • Логическая память. Соотношение физической и логической памяти. Логическая память

  • Рис. 8.3.

  • Простейшие схемы управления памятью. Схема с переменными разделами Простейшие схемы управления памятью. Оверлейная структура

  • Схема с фиксированными разделами

  • Схема с переменными разделами

  • Динамическое распределение памяти. Простой свопинг

  • Страничная память. Сегментная и сегментно-страничная организация памяти.

  • ОС. Вопросы к экзамену по дисциплине Операционные системы 2019 год


    Скачать 0.54 Mb.
    НазваниеВопросы к экзамену по дисциплине Операционные системы 2019 год
    Дата10.01.2020
    Размер0.54 Mb.
    Формат файлаdocx
    Имя файлаVoprosy_k_ekzamenu_po_distsipline_Operatsionnye_sistemy_2019_god.docx
    ТипВопросы к экзамену
    #103408
    страница5 из 6
    1   2   3   4   5   6

    Организация файловой системы

    Файл


    Файл - это понятие, привычное любому пользователю компьютера. Для пользователя каждый файл - это отдельный предмет, у которого есть начало и конец и который отличается от всех остальных файлов именем и расположением ("как называется" и "где лежит"). Как и любой предмет, файл можно создать, переместить и уничтожить, однако без внешнего вмешательства он будет сохраняться неизменным неопределенно долгое время. Файл предназначен для хранения данных любого типа - текстовых, графических, звуковых, исполняемых программ и многого другого. Аналогия файла с предметом позволяет пользователю быстро освоиться при работе с данными в операционной системе.

    Для операционной системы Linux файл - не менее важное понятие, чем для ее пользователя: все данные, хранящиеся на любых носителях, обязательно находятся внутри какого-нибудь файла, в противном случае они просто недоступны ни для операционной системы, ни для пользователей. Более того, многие устройства, подключенные к компьютеру (начиная с клавиатуры и заканчивая любыми внешними устройствами, например, принтерами и сканерами), Linux представляет как файлы (так называемые файлы-дырки ). Конечно, файл, содержащий обычные данные, сильно отличается от файла, предназначенного для обращения к устройству, поэтому в Linux определено несколько различных типов файлов. В основном пользователь имеет дело с файлами трех типов: обычными файлами, предназначенными для хранения данных, каталогами и файлами-ссылками (именно о них и пойдет речь в данной лекции, о файлах других типов см. лекцию 11).

    Файл - это oтдельная область данных на одном из носителей информации, у которой есть собственное имя.

    Система файлов: каталоги


    Файловая система с точки зрения пользователя - это "пространство", в котором размещаются файлы. Наличие файловой системы позволяет определить не только "как называется файл ", но и "где он находится". Различать файлы только по имени было бы нецелесообразно: приходилось бы помнить, как называется каждый файл и при этом заботиться о том, чтобы имена никогда не повторялись. Более того, необходим механизм, позволяющий работать с группами тематически связанных между собой файлов(например, компонентов одной и той же программы или разных глав диссертации). Иначе говоря, файлы нужно систематизировать.

    Файловая система - способ хранения и организации доступа к данным на информационном носителе или его разделе. Классическая файловая система имеет иерархическую структуру, в которой файл однозначно определяется полным путем к нему.

    Linux может работать с различными типами файловых систем, которые различаются списком поддерживаемых возможностей, производительностью в разных ситуациях, надежностью и другими признаками.

    Большинство современных файловых систем (но не все!) используют в качестве основного организационного принципа каталогиКаталог - это список ссылок на файлы или другие каталоги . Принято говорить, что каталог содержит файлы или другие каталоги, хотя в действительности он только ссылается на них, физическое размещение данных на диске обычно никак не связано с размещением каталогаКаталог, на который есть ссылка в данном каталоге, называется подкаталогом или вложенным каталогом . Каталог в файловой системe более всего напоминает библиотечный каталог, содержащий ссылки на объединенные по каким-то признакам книги и другие разделы каталога ( файлы и подкаталоги ). Ссылка на один и тот же файл может содержаться в нескольких каталогах одновременно - это делает доступ к файлу более удобным. В файловой системe  Ext2 каждый каталог - это отдельный файл особого типа (" d ", от англ. "directory"), отличающийся от обычного файла с данными: в нем могут содержаться только ссылки на другие файлы и каталоги.

    В файловой системе Linux нет папок и документов. Есть каталоги и файлы, возможности которых куда шире.

    Довольно часто вместо термина "каталог" употребляется "папка" (англ. folder ). Этот термин хорошо вписывается в представление о файлах как о предметах, которые можно раскладывать по папкам, однако часть возможностей файловой системы, которая противоречит этому представлению, таким образом затемняется. В частности, с термином "папка" плохо согласуется то, что ссылка на файл может присутствовать одновременно в нескольких каталогахфайл может быть ссылкой на другой файл и т. д. В Linux эти возможности файловой системы весьма важны для эффективной работы, поэтому мы будем использовать более подходящий термин "каталог".

    В файловой системе, организованной при помощи каталогов, на любой файл должна быть ссылка как минимум из одного каталога, в противном случае файл просто не будет доступен внутри этой файловой системы, иначе говоря, не будет существовать.

    Назначение файловой системы

    Файловая система – это совокупность средств и правил размещения и перемещения файлов на внешних носителях.

    Поскольку файл – это набор данных, то файловая система – это система управления данными.

    Расположение файлов на жестком диске

    Жесткий диск разбивается на сектора. Емкость дорожки в пределах сектора обычно равна 512 байт.



    Минимальной учетной единицей объема данных в файловой системе является кластер, состоящий из одного или нескольких смежных секторов. Файл на диске обязательно занимает целое число кластеров. Если в файле записан даже 1 байт данных, он все равно займет полный кластер.

    Существуют файловые системы с фрагментированным и не фрагментированным расположением файла.

    Не фрагментированное расположение файла

    Файл располагается в смежных кластерах



    Фрагментированное расположение файла

    Файл может располагаться в несмежных кластерах.



    В ФС с не фрагментированным расположением файла чтение/запись данных происходит быстрее, так как позиционирование магнитной головки диска производится лишь один раз – на первый кластер файла.

    Система с фрагментированным расположение файла более рационально использует дисковое пространство, поскольку не всегда может найтись непрерывная область нужного размера, однако за это приходится расплачиваться скоростью чтения/записи данных, а также, что более неприятно, более быстрым износом механизма перемещения коромысла жесткого диска.

    В служебных программах есть программа "Дефрагментация диска", перестраивающая фрагментированные файлы так, чтобы они занимали смежные кластеры.

    Файловые системы ОС Windows являются системами с фрагментированным расположением файла.

    Диски, папки, файлы. Логическая структура файловой системы

    Системы учета файлов в современных файловых системах как правило строятся по иерархическому принципу: диск (устройство памяти) – папка – файл. Дискам (устройствам) в системе даются логические имена. Например, один физический жесткий диск обычно при форматировании разбивается на несколько логических с именами C, D, E..., устройство оптических дисков получает логическое имя F и т.д.

    Папка может содержать папки и файлы. Данные хранятся только в файлах.

    В папке не может находиться двух и более папок (файлов) с одинаковыми именами, однако папки (файлы) с одинаковыми именами могут находиться в разных папках.

    Путь к файлу – это последовательность папок, в которых находится файл. Имена папок в пути к файлу разделяются символом "\" – "слэш".

    Полное имя файла состоит из пути к файлу и собственно имени файла. Например:

    • D:\Факультет\Группа\Иванов\реферат.doc;

    • C:\WINDOWS\MEDIA\ringin.wav.

    Так, в первом примере путь к файлу: D:\Факультет\Группа\Иванов, имя файла: реферат.doc.

    1. Основные файловые системы, применяемые в современных ОС.

    Файловая система - это часть операционной системы, назначение которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совместное использование файлов несколькими пользователями и процессами. В широком смысле понятие "файловая система" включает:  совокупность всех файлов на диске, наборы структур данных, используемых для управления файлами, такие, например, как каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске,  комплекс системных программных средств, реализующих управление файлами, в частности: создание, уничтожение, чтение, запись, именование, поиск и другие операции над файлами.  FAT32 - замена FAT16 - последняя версия файловой системы FAT и улучшение предыдущей версии, известной как FAT16. Она была создана, чтобы преодолеть ограничения на размер тома в FAT16, позволяя при этом использовать старый код программ MS-DOS и сохранив формат. FAT32 использует 32-разрядную адресацию кластеров. FAT32 появилась вместе с Windows 95 OSR2. Максимально возможное число кластеров в FAT32 равно 268 435 445, что позволяет использовать тома (логические диски) объёмом до 8 ТБ. Максимально возможный размер файла для тома FAT32 — 4 ГБ — 4 294 967 295 байт.  NTFS- стандартная файловая система для семейства операционных систем Microsoft Windows NT. NTFS заменила использовавшуюся в MS-DOS и Microsoft Windows файловую систему FAT. NTFS поддерживает систему метаданных и использует специализированные структуры данных для хранения информации о файлах для улучшения производительности, надёжности и эффективности использования дискового пространства. Максимальный размер файла: Теоретически — 2 в 64 степени байт минус 1 килобайт, Практически — 2 в 44 степени байт минус 64 килобайта (16384 гигабайт или 16 терабайт).  exFAT (от англ. Extended FAT — «расширенная FAT») — проприетарная файловая система, предназначенная главным образом для флэш-накопителей. Впервые представлена фирмой Microsoft для встроенных устройств в Windows Embedded CE 6.0. Уменьшение количества перезаписей одного и того же сектора, что важно для флеш-накопителей, у которых ячейки памяти необратимо изнашиваются после определённого количества операций записи (это сильно смягчается выравниванием износа — wear leveling, — встроенным в современные USB-накопители и SD-карточки). Это была основная причина разработки ExFAT. Теоретический лимит на размер файла 2 в 64 степени байт (16 эксабайт). Максимальный размер кластера увеличен до 225 байт (32 мегаба0000000000000йта).  Third Extended File System (третья версия расширенной файловой системы), сокращённо ext3 или ext3fs — журналируемая файловая система, используемая в операционных системах на ядре Linux, является файловой системой по умолчанию во многих дистрибутивах. Основана на ФС ext2, начало разработки которой положил Стивен Твиди. Файловая система ext3 может поддерживать файлы размером до 1 ТБ. С Linux-ядром 2.4 объём файловой системы ограничен максимальным размером блочного устройства, что составляет 2 терабайта. В Linux 2.6 (для 32-разрядных процессоров) максимальный размер блочных устройств составляет 16 ТБ, однако ext3 поддерживает только до 4 ТБ.  HFS Plus или HFS+ или Mac OS Extended — файловая система, разработанная Apple Inc. для замены ранее использующейся HFS, основной файловой системы на компьютерах Macintosh. HFS Plus - улучшенная версия HFS, поддерживающая файлы большего размера (ограничения составляют 16ЭБ на максимальный размер файла и тома) и использующая символы Unicode (вместо Mac OS Roman) в именах файлов. HFS+ поддерживает имена длиной до 255 символов формата UTF-16 и многопоточные файлы подобно NTFS. HFS+ также использует 32-битную таблицу привязки файла к месту на диске вместо 16-битной в HFS. Старая адресация являлась серьёзным ограничением HFS, не позволявшим работать с томами объёмом более 65 536 блоков (как FAT16 и FAT-32). При объёме диска в 1 ГБ размер кластера (блока) составлял 16 КБ — даже файл из 1 байта занимал все 16 КБ. Подобно предшественнице, HFS+ использует древовидную структуру B*-дерево для хранения большей части метаданных.

    1. Физическая организация памяти компьютера

    Запоминающие устройства компьютера разделяют, как минимум, на два уровня: основную (главную, оперативнуюфизическую ) и вторичную (внешнюю) память.

    Основная память представляет собой упорядоченный массив однобайтовых ячеек, каждая из которых имеет свой уникальный адрес (номер). Процессор извлекает команду из основной памяти, декодирует и выполняет ее. Для выполнения команды могут потребоваться обращения еще к нескольким ячейкам основной памяти. Обычно основная память изготавливается с применением полупроводниковых технологий и теряет свое содержимое при отключении питания.

    Вторичную память (это главным образом диски) также можно рассматривать как одномерное линейное адресное пространство, состоящее из последовательности байтов. В отличие от оперативной памяти, она является энергонезависимой, имеет существенно большую емкость и используется в качестве расширения основной памяти.

    Эту схему можно дополнить еще несколькими промежуточными уровнями, как показано на жж-. Разновидности памяти могут быть объединены в иерархию по убыванию времени доступа, возрастанию цены и увеличению емкости.




    Рис. 8.1. Иерархия памяти

    Многоуровневую схему используют следующим образом. Информация, которая находится в памяти верхнего уровня, обычно хранится также на уровнях с большими номерами. Если процессор не обнаруживает нужную информацию на i-м уровне, он начинает искать ее на следующих уровнях. Когда нужная информация найдена, она переносится в более быстрые уровни.

    1. Логическая память. Соотношение физической и логической памяти.

    Логическая память


    Аппаратная организация памяти в виде линейного набора ячеек не соответствует представлениям программиста о том, как организовано хранение программ и данных. Большинство программ представляет собой набор модулей, созданных независимо друг от друга. Иногда все модули, входящие в состав процесса, располагаются в памяти один за другим, образуя линейное пространство адресов. Однако чаще модули помещаются в разные области памяти и используются по-разному.

    Схема управления памятью, поддерживающая этот взгляд пользователя на то, как хранятся программы и данные, называется сегментацией. Сегмент – область памяти определенного назначения, внутри которой поддерживается линейная адресация. Сегменты содержат процедуры, массивы, стек или скалярные величины, но обычно не содержат информацию смешанного типа.

    По-видимому, вначале сегменты памяти появились в связи с необходимостью обобществления процессами фрагментов программного кода (текстовый редактор, тригонометрические библиотеки и т. д.), без чего каждый процесс должен был хранить в своем адресном пространстве дублирующую информацию. Эти отдельные участки памяти, хранящие информацию, которую система отображает в память нескольких процессов, получили название сегментов. Память, таким образом, перестала быть линейной и превратилась в двумерную. Адрес состоит из двух компонентов: номер сегмента, смещение внутри сегмента. Далее оказалось удобным размещать в разных сегментах различные компоненты процесса (код программы, данные, стек и т. д.). Попутно выяснилось, что можно контролировать характер работы с конкретным сегментом, приписав ему атрибуты, например права доступа или типы операций, которые разрешается производить с данными, хранящимися в сегменте.




    Рис. 8.2. Расположение сегментов процессов в памяти компьютера

    Некоторые сегменты, описывающие адресное пространство процесса, показаны на . Более подробная информация о типах сегментов имеется в лекции 10.

    Большинство современных ОС поддерживают сегментную организацию памяти. В некоторых архитектурах (Intel, например) сегментация поддерживается оборудованием.

    Адреса, к которым обращается процесс, таким образом, отличаются от адресов, реально существующих в оперативной памяти. В каждом конкретном случае используемые программой адреса могут быть представлены различными способами. Например, адреса в исходных текстах обычно символические. Компилятор связывает эти символические адреса с перемещаемыми адресами (такими, как n байт от начала модуля). Подобный адрес, сгенерированный программой, обычно называют логическим (в системах с виртуальной памятью он часто называется виртуальным) адресом. Совокупность всех логических адресов называется логическим (виртуальным) адресным пространством.

    Связывание адресов


    Итак логические и физические адресные пространства ни по организации, ни по размеру не соответствуют друг другу. Максимальный размер логического адресного пространства обычно определяется разрядностью процессора (например, 232) и в современных системах значительно превышает размер физического адресного пространства. Следовательно, процессор и ОС должны быть способны отобразить ссылки в коде программы в реальные физические адреса, соответствующие текущему расположению программы в основной памяти. Такое отображение адресов называют трансляцией (привязкой) адреса или связыванием адресов (см. рис. 8.3).

    Связывание логического адреса, порожденного оператором программы, с физическим должно быть осуществлено до начала выполнения оператора или в момент его выполнения. Таким образом, привязка инструкций и данных к памяти в принципе может быть сделана на следующих шагах [Silberschatz, 2002].

    • Этап компиляции (Compile time). Когда на стадии компиляции известно точное место размещения процесса в памяти, тогда непосредственно генерируются физические адреса. При изменении стартового адреса программы необходимо перекомпилировать ее код. В качестве примера можно привести .com программы MS-DOS, которые связывают ее с физическими адресами на стадии компиляции.

    • Этап загрузки (Load time). Если информация о размещении программы на стадии компиляции отсутствует, компилятор генерирует перемещаемый код. В этом случае окончательное связывание откладывается до момента загрузки. Если стартовый адрес меняется, нужно всего лишь перезагрузить код с учетом измененной величины.

    • Этап выполнения (Execution time). Если процесс может быть перемещен во время выполнения из одной области памяти в другую, связывание откладывается до стадии выполнения. Здесь желательно наличие специализированного оборудования, например регистров перемещения. Их значение прибавляется к каждому адресу, сгенерированному процессом. Большинство современных ОС осуществляет трансляцию адресов на этапе выполнения, используя для этого специальный аппаратный механизм (см. лекцию 9).




    Рис. 8.3. Формирование логического адреса и связывание логического адреса с физическим

    1. Простейшие схемы управления памятью. Схема с фиксированными разделами

    2. Простейшие схемы управления памятью. Схема с переменными разделами

    3. Простейшие схемы управления памятью. Оверлейная структура

    Простейшие схемы управления памятью


    Первые ОС применяли очень простые методы управления памятью. Вначале каждый процесс пользователя должен был полностью поместиться в основной памяти, занимать непрерывную область памяти, а система принимала к обслуживанию дополнительные пользовательские процессы до тех пор, пока все они одновременно помещались в основной памяти. Затем появился "простой свопинг" (система по-прежнему размещает каждый процесс в основной памяти целиком, но иногда на основании некоторого критерия целиком сбрасывает образ некоторого процесса из основной памяти во внешнюю и заменяет его в основной памяти образом другого процесса). Такого рода схемы имеют не только историческую ценность. В настоящее время они применяются в учебных и научно-исследовательских модельных ОС, а также в ОС для встроенных (embedded) компьютеров.
    Схема с фиксированными разделами

    Самым простым способом управления оперативной памятью является ее предварительное (обычно на этапе генерации или в момент загрузки системы) разбиение на несколько разделов фиксированной величины. Поступающие процессы помещаются в тот или иной раздел. При этом происходит условное разбиение физического адресного пространстваСвязывание логических и физических адресов процесса происходит на этапе его загрузки в конкретный раздел, иногда – на этапе компиляции.

    Каждый раздел может иметь свою очередь процессов, а может существовать и глобальная очередь для всех разделов(см. рис. 8.4).

    Эта схема была реализована в IBM OS/360 (MFT), DEC RSX-11 и ряде других систем.

    Подсистема управления памятью оценивает размер поступившего процесса, выбирает подходящий для него раздел, осуществляет загрузку процесса в этот раздел и настройку адресов.




    Рис. 8.4. Схема с фиксированными разделами: (a) – с общей очередью процессов, (b) – с отдельными очередями процессов

    Очевидный недостаток этой схемы – число одновременно выполняемых процессов ограничено числом разделов.

    Другим существенным недостатком является то, что предлагаемая схема сильно страдает от внутренней фрагментации – потери части памяти, выделенной процессу, но не используемой им. Фрагментация возникает потому, что процесс не полностью занимает выделенный ему раздел или потому, что некоторые разделы слишком малы для выполняемых пользовательских программ.
    Схема с переменными разделами

    В принципе, система свопинга может базироваться на фиксированных разделах. Более эффективной, однако, представляется схема динамического распределения или схема с переменными разделами, которая может использоваться и в тех случаях, когда все процессы целиком помещаются в памяти, то есть в отсутствие свопинга. В этом случае вначале вся память свободна и не разделена заранее на разделы. Вновь поступающей задаче выделяется строго необходимое количество памяти, не более. После выгрузки процесса память временно освобождается. По истечении некоторого времени память представляет собой переменное число разделов разного размера (рис. 8.6). Смежные свободные участки могут быть объединены.




    Рис. 8.6. Динамика распределения памяти между процессами (серым цветом показана неиспользуемая память)

    В какой раздел помещать процесс? Наиболее распространены три стратегии.

    • Стратегия первого подходящего (First fit). Процесс помещается в первый подходящий по размеру раздел.

    • Стратегия наиболее подходящего (Best fit). Процесс помещается в тот раздел, где после его загрузки останется меньше всего свободного места.

    • Стратегия наименее подходящего (Worst fit). При помещении в самый большой раздел в нем остается достаточно места для возможного размещения еще одного процесса.

    Моделирование показало, что доля полезно используемой памяти в первых двух случаях больше, при этом первый способ несколько быстрее. Попутно заметим, что перечисленные стратегии широко применяются и другими компонентами ОС, например для размещения файлов на диске.

    Типовой цикл работы менеджера памяти состоит в анализе запроса на выделение свободного участка (раздела), выборе его среди имеющихся в соответствии с одной из стратегий (первого подходящего, наиболее подходящего и наименее подходящего), загрузке процесса в выбранный раздел и последующих изменениях таблиц свободных и занятых областей. Аналогичная корректировка необходима и после завершения процесса. Связывание адресов может осуществляться на этапах загрузки и выполнения.

    Этот метод более гибок по сравнению с методом фиксированных разделов, однако ему присуща внешняя фрагментация – наличие большого числа участков неиспользуемой памяти, не выделенной ни одному процессу. Выбор стратегии размещения процесса между первым подходящим и наиболее подходящим слабо влияет на величину фрагментации. Любопытно, что метод наиболее подходящего может оказаться наихудшим, так как он оставляет множество мелких незанятых блоков.

    Одно из решений проблемы внешней фрагментации – организовать сжатие, то есть перемещение всех занятых (свободных) участков в сторону возрастания (убывания) адресов, так, чтобы вся свободная память образовала непрерывную область. Этот метод иногда называют схемой с перемещаемыми разделами. В идеале фрагментация после сжатия должна отсутствовать. Сжатие, однако, является дорогостоящей процедурой, алгоритм выбора оптимальной стратегии сжатия очень труден и, как правило, сжатие осуществляется в комбинации с выгрузкой и загрузкой по другим адресам.
    Оверлейная структура

    Так как размер логического адресного пространства процесса может быть больше, чем размер выделенного ему раздела (или больше, чем размер самого большого раздела), иногда используется техника, называемая оверлей (overlay) или организация структуры с перекрытием. Основная идея – держать в памяти только те инструкции программы, которые нужны в данный момент.

    Потребность в таком способе загрузки появляется, если логическое адресное пространство системы мало, например 1 Мбайт (MS-DOS) или даже всего 64 Кбайта (PDP-11), а программа относительно велика. На современных 32-разрядных системах, где виртуальное адресное пространство измеряется гигабайтами, проблемы с нехваткой памяти решаются другими способами (см. раздел "Виртуальная память").




    Рис. 8.5. Организация структуры с перекрытием. Можно поочередно загружать в память ветви A-B, A-C-D и A-C-E программы

    Коды ветвей оверлейной структуры программы находятся на диске как абсолютные образы памяти и считываются драйвером оверлеев при необходимости. Для описания оверлейной структуры обычно используется специальный несложный язык (overlay description language). Совокупность файлов исполняемой программы дополняется файлом (обычно с расширением .odl), описывающим дерево вызовов внутри программы. Для примера, приведенного на рис. 8.5, текст этого файла может выглядеть так:

    A-(B,C)

    C-(D,E)

    Синтаксис подобного файла может распознаваться загрузчиком. Привязка к физической памяти происходит в момент очередной загрузки одной из ветвей программы.

    Оверлеи могут быть полностью реализованы на пользовательском уровне в системах с простой файловой структурой. ОС при этом лишь делает несколько больше операций ввода-вывода. Типовое решение – порождение линкером специальных команд, которые включают загрузчик каждый раз, когда требуется обращение к одной из перекрывающихся ветвей программы.

    Тщательное проектирование оверлейной структуры отнимает много времени и требует знания устройства программы, ее кода, данных и языка описания оверлейной структуры. По этой причине применение оверлеев ограничено компьютерами с небольшим логическим адресным пространством. Как мы увидим в дальнейшем, проблема оверлейных сегментов, контролируемых программистом, отпадает благодаря появлению систем виртуальной памяти.

    Заметим, что возможность организации структур с перекрытиями во многом обусловлена свойством локальности, которое позволяет хранить в памяти только ту информацию, которая необходима в конкретный момент вычислений.

    1. Динамическое распределение памяти. Простой свопинг

    Имея дело с пакетными системами, можно обходиться фиксированными разделами и не использовать ничего более сложного. В системах с разделением времени возможна ситуация, когда память не в состоянии содержать все пользовательские процессы. Приходится прибегать к свопингу (swapping) – перемещению процессов из главной памяти на диск и обратно целиком. Частичная выгрузка процессов на диск осуществляется в системах со страничной организацией (paging) и будет рассмотрена ниже.

    Выгруженный процесс может быть возвращен в то же самое адресное пространство или в другое. Это ограничение диктуется методом связывания. Для схемы связывания на этапе выполнения можно загрузить процесс в другое место памяти.

    Свопинг не имеет непосредственного отношения к управлению памятью, скорее он связан с подсистемой планирования процессов. Очевидно, что свопинг увеличивает время переключения контекста. Время выгрузки может быть сокращено за счет организации специально отведенного пространства на диске (раздел для свопинга). Обмен с диском при этом осуществляется блоками большего размера, то есть быстрее, чем через стандартную файловую систему. Во многих версиях Unix свопинг начинает работать только тогда, когда возникает необходимость в снижении загрузки системы.

    1. Страничная память.

    2. Сегментная и сегментно-страничная организация памяти.
    1   2   3   4   5   6


    написать администратору сайта