Ответы на гистологию. Вопросы к экзамену по гистологии Цитилогия
Скачать 0.83 Mb.
|
По химическому строению хроматин состоит из: 1) дезоксирибонуклеиновой кислоты (ДНК); 2) белков; 3) рибонуклеиновой кислоты (РНК). Ядрышко — сферическое образование (1—5 мкм в диаметре), хорошо воспринимающее основные красители и располагающееся среди хроматина. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе. В одном ядре содержится несколько ядрышек. Микроскопически в ядрышке различают: 1) фибриллярный компонент (локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида); 2) гранулярный компонент (локализуется в периферической части ядрышка и представляет собой Скопление субъединиц рибосом). Кириолемма – ядерная оболочка кот., отделяет содержимое ядра от цитоплазмы,обеспечивает регулируемый обмен веществ м/д ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина. Функции ядер соматических клеток: 1) хранение генетической информации, закодированной в молекулах ДНК; 2) репарация (восстановление) молекул ДНК повреждения с помощью специальных репаративных ферментов; 3)редупликация (удвоение) ДНК в синтетическом периоде интерфазы. 4) передача генетической информации дочерним клеткам во время митоза; 5) реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтеза (информационной, рибрсомальной и транспортных РНК). Функции ядер половых клеток: 1) хранение генетической информации; 2) передача генетической информации при слиянии женских и мужских половых кл. В организме млекопитающих и человека различают следующие типы клеток: 1) часто делящиеся клетки клетки эпителия кишечника; 2) редко делящиеся клетки (клетки печени); . 3) неделящиеся клетки (нервные клетки). Жизненный цикл у этих клеточных типов различен. Клеточный цикл подразделяется на два основных периода: 1) митоз, или период деления; 2) интерфазу — промежуток жизни клетки между двумя делениями. 10. Внутрикл. регенерация. Общая морфо-функциональная характеристика. Её биологическое значение. Регенерация - обновление структур организма в процессе жизнедеятельности и восстановление тех структур, которые были утрачены в результате патологических процессов. В большей степени регенерация присуща растениям и беспозвоночным животным, в меньшей - позвоночным. Регенерация - в медицине - полное восстановление утраченных частей. Регенерация в медицине. Различают физиологическую, репаративную и патологическую регенерацию. При травмах и др. патологических состояниях, которые сопровождаются массовой гибелью клеток, восстановление тканей осуществляется за счёт репаративнои (восстановительной) регенерации. Если в процессе репаративной регенерации утраченная часть замещается равноценной, специализированной тканью, говорят о полной регенерации (реституции); если на месте дефекта разрастается неспециализированная соединительная ткань,— о неполной регенерации (заживлении посредством рубцевания). В ряде случаев при субституции функция восстанавливается за счёт интенсивного новообразования ткани (аналогичной погибшей) в неповреждённой части органа. Это новообразование происходит путём либо усиленного размножения клеток, либо за счёт внутриклеточной регенерации— восстановления субклеточных структур при неизменённом числе клеток (сердечная мышца, нервная ткань). Возраст, особенности обмена веществ, состояние нервной и эндокринной систем, питание, интенсивность кровообращения в повреждённой ткани, сопутствующие заболевания могут ослабить, усилить или качественно изменить процесс регенерации. В некоторых случаях это приводит к патологической регенерации. Её проявления: длительно незаживающие язвы, нарушения срастания переломов костей, избыточные разрастания тканей или переход одного типа ткани в другой. Лечебные воздействия на процесс регенерации заключаются в стимуляции полной и предотвращении патологической регенерации. 2. Виды регенерации Различают два вида регенерации — физиологическую и репаративную. Физиологическая регенерация — непрерывное обновление структур на клеточном (смена клеток крови, эпидермиса и др.) и внутриклеточном (обновление клеточных органелл) уровнях, которым обеспечивается функционирование органов и тканей. Репаративная регенерация— процесс ликвидации структурных повреждений после действия патогенных факторов. Оба вида регенерации не являются обособленными, не зависимыми друг от друга. Значение регенерации для организма определяется тем, что на основе клеточного и внутриклеточного обновления органов обеспечивается широкий диапазон приспособительных колебаний их функциональной активности в меняющихся условиях окружающей среды, а также восстановление и компенсация нарушенных под воздействием различных патогенных факторов функций. Процесс регенерации развертывается на разных уровнях организации — системном, органном, тканевом, клеточном, внутриклеточном. Осуществляется он путем прямого и непрямого деления клеток, обновления внутриклеточных органелл и их размножения. Обновление внутриклеточных структур и их гиперплазия являются универсальной формой регенерации, присущей всем без исключения органам млекопитающих и человека. Она выражается либо в форме собственно внутриклеточной регенерации, когда после гибели части клетки ее строение восстанавливается за счет размножения сохранившихся органелл, либо в виде увеличения числа органелл (компенсаторная гиперплазия органелл) в одной клетке при гибели другой. Восстановление исходной массы органа после его повреждения осуществляется различными путями. В одних случаях сохранившаяся часть органа остается неизмененной или малоизмененной, а недостающая его часть отрастает от раневой поверхности в виде четко отграниченного регенерата. Такой способ восстановления утраченной части органа называют эпиморфозом. В других случаях происходит перестройка оставшейся части органа, в процессе которой он постепенно приобретает исходные форму и размеры. Этот вариант процесса регенерации называют морфаллаксисом. Чаще эпиморфоз и морфаллаксис встречаются в различных сочетаниях. Наблюдая увеличение размеров органа после его повреждения, прежде говорили о его компенсаторной гипертрофии. Цитологический анализ этого процесса показал, что в его основе лежит размножение клеток, т. е. регенераторная реакция. В связи с этим процесс получил название «регенерацнонная гипертрофия». Эффективность процесса регенерации в большой мере определяется условиями, в которых он протекает. Важное значение в этом отношении имеет общее состояние организма. Истощение гиповитаминоз, нарушения иннервации и др. оказывают значительное влияние на ход репаративной регенерации, затормаживая ее и способствуя переходу в патологическую. Существенное влияние на интенсивность репаративной регенерации оказывает степень функциональной нагрузки, правильное дозирование котоpoй благоприятствует этому процессу. Скорость репаративной регенерации в известной мере определяется и возрастом, что приобретает особое значение в связи с увеличением продолжительности жизни и соответственно числа оперативных вмешательств у лиц старших возрастных групп. Обычно существенных отклонений процесса регенерации при этом не отмечается и большее значение, по-видимому, имеют тяжесть заболевания и его осложнения, чем возрастное ослабление регенерационной способности Изменение общих и местных условий, в которых протекает процесс регенерации, может приводить как к количественным, так и качественным его изменениям. В регуляции процессов регенерации участвуют многочисленные факторы эндо- и экзогенной природы. Установлены антагонистические влияния различных факторов на течение внутриклеточных регенераторных и гиперпластических процессов. Наиболее изучено влияние на регенерацию различных гормонов. Регуляция митотической активности клеток различных органов осуществляется гормонами коры надпочечников, щитовидной железы, половых желез и др. Важную роль в этом отношении играют так наз. гастроинтестинальные гормоны. Известны мощные эндогенные регуляторы митотической активности — кейлоны, простландины, их антагонисты и другие биологически активные вещества. Заключение Важное место в исследованиях механизмов регуляции процессов регенерации занимает изучение роли различных отделов нервной системы в их течении и исходах. Новым направлением в разработке этой проблемы является изучение иммунологической регуляции процессов регенерации, и в частности установление факта переноса лимфоцитами «регенерационной информации», стимулирующей пролиферативную активность клеток различных внутренних органов. Регулирующее влияние на течение процесса регенерации оказывает и дозированная функциональная нагрузка. Главная проблема состоит в том, что регенерация тканей у человека происходит очень медленно. Слишком медленно, чтобы произошло восстановление действительно значительного повреждения. Если бы этот процесс удалось хоть немного ускорить, то результат оказался бы куда как значительным. Знание механизмов регуляции регенерационной способности органов и тканей открывает перспективы для разработки научных основ стимуляции репаративной регенерации и управления процессами выздоровления. 11. Способы репродукции соматических кл. Их морфологическая характеристика. Митоз – сложное, непрямое, полноценное деление клетки. - Профаза – хромосомы спирализуются, укорачиваются, приобретают вид нитей и ядро напоминает клубок нитей. Ядрышко начинает разрушаться. Ядерная оболочка частично лизируется. В цитоплазме уменьшается количество структур шероховатой ЭПС. Резко уменьшается число полисом. Центриоли клеточного центра расходятся к полюсам. Между ними микротрубочки образуют веретено деления, увеличивается вязкость цитоплазмы, её тургорт и поверхностное натяжение внутренней мембраны. - Прометафаза – исчезает ядерная оболочка и ядрышко. Хромосомы в виде толстых нитей располагаются по экватору. - Метафаза – заканчивается образование веретена деления. Хроматиновые нити прикрепляются одним концом к центриолям, а другим к центромерам хромосом. Хроматиды начинают отталкиваться друг от друга. Хромосомы подразделяются на две хроматиды. Остаются сцепленными в центре. Хромосомы выстраиваются по экватору, образуя материнскую звезду. Анафаза – рвётся связь по центромере, сохраняются нити ахроматинового веретена и растягивают хроматиды к центриолям. - Телофаза – происходят процессы обратные процессам профазы. Хромосомы десрирализуются, удлиняются, становятся тонкими. Формируется ядрышко, образуется ядерная мембрана, разрушается веретено деления, происходит цитокинез. Из материнской клетки образуются две дочерние. Полиплоидия-образование кл. с повышенным содержанием ДНК. Пр-сс полиплоидизации происходит следующим образом: после S-периода кл, обладающие 4с количеством ДНК, вступают в митотическое деление и проходят все 4-е стадии, включая телофазу, но не приступая к цитотомии. Образуется двуядерная кл.(2*2n) . Если она снова проходит S-период, то оба ядра будут содержать по 4 ДНК и n хромосом. Такая кл. вступает в митоз , на стадии метафазы происходит объединение хромосомных наборов, а затем нормальное деление, в рез-те кот-го образ-ся 2-е тетраплоидные кл.. Этот пр-сс попеременного появления двуядерных и одноядерных кл. приводит появлению ядер с 8n?, 16n, 32n, кол-вом хромосом. 12. Эндоцитоз. Экзоцитоз. Эндоцито́з — процесс захвата (интернализации) внешнего материала клеткой, осуществляемый путём образования мембранных везикул. В результате эндоцитоза клетка получает для своей жизнедеятельности гидрофильный материал, который иначе не проникает через липидный бислой клеточной мембраны. Различают фагоцитоз, пиноцитоз и рецептор-опосредованный эндоцитоз. Эндоцитоз начинается с сорбции на пов-ти плазмолеммы поглощаемых в-в. Связывание их с плазмолеммой определяется наличием на её пов-сти рецепторных молекул. После сорбции в-в на пов-сти плазмолемма начинает образовывать сначала небольшие впячивания внутрь кл. Эти впячивания могут иметь вид пузырьков или представлять глубокие инвагинации, впячивания внутрь кл. Далее эти впячивания отшнуровываются от плазмолеммы и в виде пузырьков свободно располагаются под ней. Затем эндоцитозные пузырьки сливаются др. с др. Экзоцитоз-выведение в-в из кл. В этом случае внутрикл. продукты( белки, мукополисахариды, липопротеиды), заключенные в вакуоли или пузырьки подходят к плазмолемме. В местах контактов плазмолемма и мембрана вакуоли сливается и содержимое вакуоли поступает в окруж.ср. 13. Жизненный цикл кл.: его этапы, морфо-функциональная характеристика и особенности у различных видов кл. Жизненный цикл клетки – это период существования клетки от момента её образования путём деления материнской клетки до её смерти. Важнейшим компонентом является митотический цикл. Периоды: - Интерфаза – подготовка к делению клетки. - Митоз – деление клетки. Интерфаза - подготовка к делению клетки. - Пресинтетический (G1) – идёт рост образовавшейся клетки, синтез различных РНК и белков. Синтез ДНК не происходит. (12-24 часа). 2n2c (хромосом и ДНК). - Синтетический (S) – синтез ДНК и редупликация хромосом. Синтез РНК и белка. (10 часов). - Постсинтетический (G2) – синтез ДНК останавливается. Происходит синтез РНК, белков и накопление энергии. Ядро увеличивается в размере. Происходит его деление. (3-4 часа). Способы деления клеток: - Амитоз – прямое, простое деление клетки (неполноценное). - Митоз – сложное, непрямое, полноценное деление клетки. - Мейоз – сложное, непрямое, редукционное деление специализированных клеток репродуктивных органов. Способы деления клеточных структур: - Эндомитоз – увеличение числа хромосом кратное их набору. - Политения – образование многонитчатых хромосом за счёт многократной репликации хромосом. Митоз – сложное, непрямое, полноценное деление клетки. - Профаза – хромосомы спирализуются, укорачиваются, приобретают вид нитей и ядро напоминает клубок нитей. Ядрышко начинает разрушаться. Ядерная оболочка частично лизируется. В цитоплазме уменьшается количество структур шероховатой ЭПС. Резко уменьшается число полисом. Центриоли клеточного центра расходятся к полюсам. Между ними микротрубочки образуют веретено деления, увеличивается вязкость цитоплазмы, её тургорт и поверхностное натяжение внутренней мембраны. - Прометафаза – исчезает ядерная оболочка и ядрышко. Хромосомы в виде толстых нитей располагаются по экватору. - Метафаза – заканчивается образование веретена деления. Хроматиновые нити прикрепляются одним концом к центриолям, а другим к центромерам хромосом. Хроматиды начинают отталкиваться друг от друга. Хромосомы подразделяются на две хроматиды. Остаются сцепленными в центре. Хромосомы выстраиваются по экватору, образуя материнскую звезду. Анафаза – рвётся связь по центромере, сохраняются нити ахроматинового веретена и растягивают хроматиды к центриолям. - Телофаза – происходят процессы обратные процессам профазы. Хромосомы десрирализуются, удлиняются, становятся тонкими. Формируется ядрышко, образуется ядерная мембрана, разрушается веретено деления, происходит цитокинез. Из материнской клетки образуются две дочерние. Клеточный (жизненный) цикл Клеточный (или жизненный) цикл клетки – время существования клетки от деления до следующего деления или от деления до смерти. Для разных типов клеток клеточный цикл различен. В организме млекопитающих и человека различают следующие типы клеток, локализующиеся в разных тканях и органах: 1) часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки); 2) редко делящиеся клетки (клетки печени – гепатоциты); 3) неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и др.). Жизненный цикл у этих клеточных типов различен. Жизненный цикл у часто делящихся клеток – время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом. Такой клеточный цикл подразделяется на два основных периода: 1) митоз (или период деления); 2) интерфазу (промежуток жизни клетки между двумя делениями). Выделяют два основных способа размножения (репродукции) клеток. 1. Митоз (кариокенез) – непрямое деление клеток, присущее в основном соматическим клеткам. 2. Мейоз (редукционное деление) характерен только для половых клеток. Имеются описания и третьего способа деления клеток – амитоза (или прямого деления), которое осуществляется путем перетяжки ядра и цитоплазмы с образованием двух дочерних клеток или одной двухядерной. Однако в настоящее время считают, что амитоз характерен для старых и дегенерирующих клеток и является отражением патологии клетки. Указанные два способа деления клеток подразделяются на фазы или периоды. Митоз подразделяется на четыре фазы: 1) профазу; 2) метафазу; 3) анафазу; 4) телофазу. Профаза характеризуется морфологическими изменениями ядра и цитоплазмы. В ядре происходят следующие преобразования: 1) конденсация хроматина и образование хромосом, состоящих из двух хроматид; 2) исчезновение ядрышка; 3) распад кариолеммы на отдельные пузырьки. В цитоплазме происходят следующие изменения: 1) редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки; 2) формирование из микротрубочек веретена деления; 3) редукция зернистой ЭПС и также уменьшение числа свободных и прикрепленных рибосом. В метафазе происходит следующее: 1) образование метафазной пластинки (или материнской звезды); 2) неполное обособление сестринских хроматид друг от друга. Для анафазы характерно: 1) полное расхождение хроматид и образование двух равноценных дипольных наборов хромосом; 2) расхождение хромосомных наборов к полюсам митотического веретена и расхождение самих полюсов. Для телофазы характерны: 1) деконденсация хромосом каждого хромосомного набора; 2) формирование из пузырьков ядерной оболочки; 3) цитотомия, (перетяжка двухядерной клетки на две дочерние самостоятельные клетки); 4) появление ядрышек в дочерних клетках. Интерфазу подразделяют на три периода: 1) I – J1 (или пресинтетический период); 2) II – S (или синтетический); 3) III – J2 (или постсинтетический период). В пресинтетическом периоде в клетке происходят следующие процессы: 1) усиленное формирование синтетического аппарата клетки – увеличение числа рибосом и различных видов РНК (транспортной, информационной, рибосомальной); 2) усиление синтеза белка, необходимого для роста клетки; 3) подготовка клетки к синтетическому периоду – синтез ферментов, необходимых для образования новых молекул ДНК. Для синтетического периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки. Постсинтетический период характеризуется усиленным синтезом информационной РНК и всех клеточных белков, особенно тубулинов, необходимых для формирования веретена деления. Клетки некоторых тканей (например, гепатоциты) по выходе из митоза вступают в так называемый J0-период, во время которого они выполняют свои многочисленные функции в течение ряда лет, при этом не вступая в синтетический период. Только при определенных обстоятельствах (при повреждении или удалении части печени) они вступают в нормальный клеточный цикл (или в синтетический период), синтезируя ДНК, а затем митотически делятся. Жизненный цикл таких редко делящихся клеток можно представить следующим образом: 1) митоз; 2) J1-период; 3) J0-период; 4) S-период; 5) J2-период. Большинство клеток нервной ткани, особенно нейроны центральной нервной системы, по выходе из митоза еще в эмбриональном периоде в дальнейшем не делятся. Жизненный цикл таких клеток состоит из следующих периодов: 1) митоза – I период; 2) роста – II период; 3) длительного функционирования – III период; 4) старения – IV период; 5) смерти – V период. На протяжении длительного жизненного цикла такие клетки постоянно регенерируют по внутриклеточному типу: белковые и липидные молекулы, входящие в состав разнообразных клеточных структур, постепенно заменяются новыми, т. е. клетки постепенно обновляются. На протяжении жизненного цикла в цитоплазме неделящихся клеток накапливаются различные, прежде всего липидные включения, в частности липофусцин, рассматриваемый в настоящее время как пигмент старения. Мейоз – способ деления клеток, при котором происходит уменьшение числа хромосом в дочерних клетках в 2 раза, характерен для половых клеток. В данном способе деления отсутствует редупликация ДНК. Кроме митоза и мейоза, выделяется также эндорепродукция, не приводящая к увеличению количества клеток, но способствующая увеличению количества работающих структур и усилению функциональной способности клетки. Для данного способа характерно, что после митоза клетки сначала вступают в J1-, а затем в S-период. Однако такие клетки после удвоения ДНК не вступают в J2-период, а затем в митоз. В результате этого количество ДНК становится увеличенным вдвое – клетка превращается в полиплоидную. Полиплоидные клетки могут вновь вступать в S-период, в результате чего они увеличивают свою плоидность. В полиплоидных клетках увеличивается размер ядра и цитоплазмы, клетки становятся гипетрофированными. Некоторые полиплоидные клетки после редупликации ДНК вступают в митоз, однако он не заканчивается цитотомией, так как такие клетки становятся двухъядерными. Таким образом, при эндорепродукции не происходит увеличения числа клеток, но увеличивается количество ДНК и органелл, следовательно, и функциональная способность полиплоидной клетки. Способностью к эндорепродукции обладают не все клетки. Наиболее характерна эндорепродукция для печеночных клеток, особенно с увеличением возраста (например, в старости 80% гепатоцитов человека являются полиплоидными), а также для ацинозных клеток поджелудочной железы и эпителия мочевого пузыря. |