Воспроизведение организмов. Воспроизведение организмов (множественный выбор) Разнообразие организмов одноклеточные и многоклеточные автотрофы, гетеротрофы Одноклеточные и многоклеточные организмы
Скачать 0.5 Mb.
|
Биологические основы выращивания культурных растений и домашних животных Для достижения генетически запрограммированной продуктивности сельскохозяйственные растения нуждаются в создании оптимальных условий. В первую очередь им, безусловно, необходима соответствующая интенсивность освещения, которая обеспечивает протекание процессов фотосинтеза, однако если пшеница требует высокой интенсивности света, то кофейные деревья необходимо выращивать в тени. Не менее существенным фактором является и достаточное количество влаги в почве, что можно обеспечить в основном благодаря созданию оросительных систем, хотя в настоящее время все чаще прибегают к капельному поливу. Еще одним важным условием повышения урожайности сельскохозяйственных культур является обеспечение их элементами минерального питания. Эту проблему частично можно решить путем внесения в почву удобрений, что, однако, сопряжено с риском чрезмерного их накопления и смыва в близлежащие водоемы. Поэтому стараются применять многопольные севообороты, в которые включают бобовые, образующие симбиоз с клубеньковыми бактериями, переводящими атмосферный азот в доступную для растений форму. С момента зарождения земледелия культурные растения страдают от вредителей и возбудителей различных заболеваний, которые снижают их урожайность, а в некоторых случаях и полностью уничтожают посевы. Причиной таких стихийных бедствий является их пониженная устойчивость к факторам среды и занятие больших площадей одним видом растений. Для борьбы с вредителями растений долгое время использовали химические вещества — пестициды, однако со временем выяснилось, что появились новые расы, устойчивые к этим веществам, а сами пестициды обладают токсическим и мутагенным действием. Поэтому в настоящее время во многих странах использование пестицидов существенно ограничено или вовсе запрещено. В связи с этим на передний план выходят биологические методы борьбы с вредителями, которые связаны либо с массовым размножением хищника или паразита данного вредителя, либо с нарушением размножения вредителя путем отлова самцов, а также с искусственной стерилизацией самцов, которые не дают потомков в результате скрещивания с нормальными самками. Сельскохозяйственные животные, выращиваемые по интенсивным технологиям, также нуждаются в особых условиях. В первую очередь, им требуются сбалансированные корма, в которые ранее добавляли белок, полученный в результате бактериального синтеза, однако затем от него отказались, поскольку он мог вызывать аллергии не только у животных, но и у работников предприятий и жителей близлежащих населенных пунктов. Поэтому в настоящее время корма составляются большей частью на растительной основе. Перспективы развития растениеводства и животноводства и, в конечном итоге, решение проблемы кризиса продовольствия связаны в основном с прогрессом биотехнологии, клеточной и генной инженерии. Биотехнология, ее направления. Клеточная и генная инженерия, клонирование. Роль клеточной теории в становлении и развитии биотехнологии. Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты. Этические аспекты развития некоторых исследований в биотехнологии (клонирование человека, направленные изменения генома) Биотехнология, ее направления Биотехнология — это применение биологических процессов и использование живых организмов в промышленности, медицине, сельском хозяйстве и других отраслях человеческой деятельности. Несмотря на то, что биологические процессы издавна используются человеком в хлебопечении, сыроварении, виноделии, пивоварении, научный этап развития биотехнологии начался с 70-х годов ХIХ века с открытием Л. Пастером процесса брожения, а столетием позже биотехнология превратилась в бурно развивающуюся отрасль. В настоящее время прогресс в области биотехнологии тесно связан с применением методов генной и клеточной инженерии, а также клонированием. В качестве основных направлений биотехнологии рассматриваются получение продуктов питания, кормовых добавок и ценных кормовых белков, лекарственных препаратов и средств диагностики, биотоплива, борьба с загрязнением окружающей среды, защита растений от вредителей и болезней, а также создание штаммов микроорганизмов, сортов растений и пород животных с новыми полезными свойствами. В настоящее время в хлебопекарной и кондитерской промышленностях, пивоварении и виноделии применяются различные штаммы дрожжей. Благодаря способности осуществлять спиртовое брожение для них нашлось место и в технологиях выработки биотоплива, например, биодизеля из растительного сырья, особенно рапса. Другие микроскопические грибы широко используют для получения кефира, сыров, антибиотиков, лимонной кислоты, кормовых белков и т. д. Без бактерий невозможно получить никакие кисломолочные продукты, в том числе кефир, йогурт и сыры. Брожение, осуществляемое молочнокислыми бактериями, используется и в процессах приготовления квашеных овощей, а также силоса, поскольку накапливающиеся при этом продукты реакции угнетают развитие других микроорганизмов. Не меньшую роль бактерии играют и в фармацевтической промышленности, где они культивируются с целью получения витаминов, гормонов и ферментов. Первой микробиологический синтез гормона инсулина с помощью методов генной инженерии «освоила» кишечная палочка Escherichia coli. Очистка окружающей среды ведется в основном в двух направлениях: разложение органических остатков и накопление отдельных химических элементов, органических и неорганических веществ некоторыми видами бактерий, водорослей и простейших. С помощью методов селекции и генной инженерии уже выведены штаммы бактерий, способные разлагать соединения, утилизировать которые встречающиеся в природе виды неспособны, например пластмассы и полиэтилен. В процессе расщепления органических остатков бактерии могут выделять и горючие газы, в том числе метан, что легло в основу технологий получения биогаза из отходов растениеводства и животноводства. В связи с тем, что бактерии, грибы и вирусы способны эффективно бороться с вредителями сельского и лесного хозяйства, а также с возбудителями и переносчиками заболеваний, их штаммы используют для приготовления биопрепаратов. Преимущество этих биологических методов борьбы состоит в том, что они не только снижают численность паразитов, будучи безвредными для других организмов, но и не загрязняют при этом окружающую среду токсичными соединениями. Клеточная и генная инженерия, клонирование Клеточная инженерия — метод конструирования клеток нового типа на основе их культивирования на питательной среде, гибридизации и реконструкции. При этом в клетки вводят новые хромосомы, ядра и другие клеточные структуры. Достижения клеточной инженерии растений, которая позволяет сформировать целое растение, в том числе с измененными свойствами, из отдельной клетки, нашли широкое применение в растениеводстве и селекции. Так, стали возможными соматическая гибридизация, клеточная селекция, гаплоидизация, преодоление нескрещиваемости в культуре и другие приемы. Технологии искусственного оплодотворения, за разработку которых присуждена Нобелевская премия в области физиологии и медицины в 2010 году, также базируются на методах клеточной инженерии. Генная инженерия — это отрасль молекулярной биологии и генетики, задачей которой является конструирование генетических структур по заранее намеченному плану, создание организмов с новой генетической программой. Во многих случаях это сводится к переносу необходимых генов от одного вида живых организмов к другому, зачастую очень далекому по происхождению. Переносу генов предшествует кропотливая работа по выявлению нужного гена в геноме организма- донора (вируса, бактерии, растения, животного, гриба) и его выделению. Это наиболее трудная часть работы, поскольку вместе со структурным геном необходимо перенести и регуляторные. Затем необходимо встроить данный участок молекулы ДНК в генетический вектор (переносчик ДНК). В качестве векторов чаще всего используют вирусы, плазмиды бактерий, хромосомы митохондрий и пластид, а также искусственно сконструированные молекулы ДНК. Процесс введения вектора новой ДНК в клетку-хозяина называется трансформацией. Последний этап работы заключается в размножении организмов-хозяев и отборе тех из них, в которых «прижился» введенный ген. В настоящее время применяют и прямое введение ДНК в клетки эукариот с помощью электрических разрядов, генной пушки и другими способами. Полученные в результате переноса генов организмы называются генетически модифицированными, или трансгенными. Клонирование — это получение многочисленных копий гена, белка, клетки или организма. Клонирование генов чаще всего осуществляется с помощью бактерий и вирусов, поскольку, например, одна вирусная частица бактериофага, в которой содержится нужный ген, за один день может образовать более 1012 идентичных копий себя и этой молекулы. Клонирование растений также не представляет значительной трудности, поскольку клетки растений тотипотентны, т. е. из одной клетки можно восстановить целый организм, особенно если культивировать эти клетки на питательной среде со всеми необходимыми веществами. Массовое размножение генетически идентичных животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных. Однако в 1997 году эта проблема была разрешена с получением первого клонированного организма — овцы Долли. Для клонирования были взяты клетки молочной железы ее генетической матери, а также яйцеклетки суррогатной матери. Ядра яйцеклеток удалялись, а на их место вводились ядра клеток молочной железы. После стимуляции развития зиготы электрическим током делящийся зародыш короткий промежуток времени культивировали на питательной среде, а затем вводили в матку суррогатной матери. К сожалению, из пяти пересаженных эмбрионов выжил лишь один. В настоящее время клонирован уже целый ряд видов животных — мыши, собаки, коровы и др., однако клонирование человека запрещено законодательством многих государств и международными договорами. Заманчивые перспективы перед человечеством раскрываются в области терапевтического клонирования — воспроизведения отдельных органов. Так, в настоящее время широко используются клонированная кожа, клетки соединительной ткани и другие части организма. Роль клеточной теории в становлении и развитии биотехнологии Создание клеточной теории позволило связать наследственность и изменчивость с их материальной основой — ДНК, а также определить, что клетка является единицей строения, жизнедеятельности и развития живых организмов. Поэтому дальнейшее внимание исследователей в области биотехнологии было сосредоточено именно на клетке как основном объекте. Уже в середине ХХ века были получены первые растения, выращенные из отдельных клеток на питательной среде, а в 1973 году родился первый «ребенок из пробирки». Операции с клетками (генная и клеточная инженерии) позволили клонировать сначала холоднокровных животных, а затем и млекопитающих. Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты Прогресс биотехнологии позволил совершить прорыв в таких отраслях человеческой деятельности, как селекция, сельское хозяйство, медицина, фармация и др., поскольку появились возможности не только для изменения свойств организмов, но и для ускорения процесса их создания. Так, введение в растения бактериальных генов устойчивости к поеданию насекомыми и поражению вирусами, а также способных расти на бедных или загрязненных почвах способствует решению продовольственной проблемы, особенно в странах с быстро растущим населением. В настоящее время значительная часть посевных площадей занята трансгенными культурами в США, Канаде и Китае. Кроме того, культивирование клеток растений на фоне высоких концентраций солей и других соединений позволяет сократить сроки выведения новых сортов пшеницы, сои и других важнейших сельскохозяйственных культур до одного-двух лет. Клонирование животных, особенно с генетически измененными признаками и свойствами, позволяет вывести более продуктивные породы и добиться их быстрого размножения, однако этот процесс пока еще слишком трудоемок и дорог, чтобы применяться в промышленном масштабе. Трансформация бактерий позволила уже в начале 80-х годов ХХ века получать биологически активные вещества — инсулин, соматотропный гормон, интерферон, которые применяются в медицине, а также создать новые штаммы микроорганизмов, предназначенных для очистки сточных вод, ликвидации нефтяных разливов и т. д. Путем селекции выведены также и формы бактерий, с помощью которых получают антибиотики, извлекают цветные металлы, получают биогаз. В будущем возможно использование клонирования в сочетании с другими отраслями биотехнологии не только для размножения растений, микроорганизмов и грибов, но и для восстановления исчезнувших видов животных, возобновления природных популяций исчезающих видов. Однако для этого необходимо вначале создать генные банки, поскольку ДНК довольно быстро подвергается разрушению в окружающей среде. Этические аспекты развития некоторых исследований в биотехнологии (клонирование человека, направленные изменения генома) Расширение сферы влияния биотехнологии, с одной стороны, преследует благородные цели, поскольку с ее помощью стало возможным преодоление бесплодия, лечение многих наследственных и приобретенных заболеваний, а также решение продовольственных и экологических проблем современности. С другой стороны, активное вторжение современных технологий в медицину не может не настораживать, поскольку это сопряжено с операциями с клетками и тканями человека. Например, не совсем ясно, почему по американским законам при искусственном оплодотворении берется две донорские яйцеклетки, но пересаживается только одна из них, тогда как вторая замораживается, помещается в специальный банк и не выдается родителям даже по специальному запросу. Большинство стран законодательно ограничило эксперименты по клонированию человека в основном по этическим соображениям, поскольку они направлены не просто на воспроизведение человека, но и на последующее использование клеток, тканей и органов зародыша для экспериментов, а также в качестве их донора. В связи с этим во всем мире активно обсуждается вопрос о допустимости подобных действий. Применение генных технологий в создании новых сортов растений, пород животных и штаммов микроорганизмов также вызывает некоторые опасения, поскольку их попадание в окружающую среду может вызвать неконтролируемое распространение, например, раковых генов, и привести к необратимым последствиям для жизни и здоровья человека. Так, опыление пыльцой трансгенных растений генетически немодифицированных сортов и видов может стимулировать появление сверхустойчивых к химическим и биологическим средствам борьбы сорняков. Особую опасность представляет внесение новых генов в сбалансированный геном, откуда они могут быть исключены в любой момент, что может привести к появлению каких-либо вирусоподобных организмов. Потребление продуктов, полученных с использованием генетически модифицированных организмов, по некоторым данным, приводит к существенным нарушениям в репродуктивной сфере человека, а в перспективе может угрожать и самой жизни, поскольку мутировавший лишь по одному нуклеотиду ген устойчивости картофеля к поеданию колорадским жуком кодирует белок, смертельно опасный уже и для человека. И хотя это является маловероятным, поскольку ДНК потребляемых нами продуктов должна расщепляться в кишечнике, все же такая вероятность существует, и сбрасывать ее со счетов не приходится. Сравнительно слабая изученность проблем клонирования и применения генных технологий заставляет многие правительства принимать решения по ограничению сферы их применения и специальной маркировке продуктов питания, полученных таким способом, с целью информирования. |