Цитология растений. Ченцов - Общая цитология. Ю. С. Ченцоввведение в клеточную биологию. Общая цитология
Скачать 1.71 Mb.
|
Глава 21. Микротрубочки Общая характеристика мкротрубочек Одним из обязательных компонентов цитоскелета эукариот являются микротрубочки (рис. 265). Это нитчатые неветвящиеся структуры, толщиной 25 361 нм, состоящие из белков-тубулинов и ассоциированных с ними белков. Тубулины микротрубочек при полимеризации образуют полые трубки, откуда и их название. Длина их может достигать нескольких мкм; самые длинные микротрубочки встречаются в составе аксонемы хвостов спермиев. Микротрубочки встречаются в цитоплазме интерфазных клеток, где они располагаются поодиночке или небольшими рыхлыми пучками, или в виде плотноупакованных микротрубочек в составе центриолей, базальных телец и в ресничках и жгутиках. При делении клеток большая часть микротрубочек клетки входит в состав веретена деления. В морфологическом отношении микротрубочки представляют собой длинные полые цилиндры с внешним диаметром 25 нм (рис. 266). Стенка микротрубочек состоит из полимеризованных молекул белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку (рис. 267). Размер мономера тубулина составляет около 5 нм, равного толщине стенки микротрубочки, в поперечном сечении которой видны 13 глобулярных молекул. Молекула тубулина представляет собой гетеродимер, состоящий из двух разных субъедниц, из α –тубулина и β – тубулина, которые при ассоциации образуют собственно белок тубулин, изначально поляризованный. Обе убъединицы мономера тубулина связаны с ГТФ, однако на α -субъдинице ГТФ не подвергается гидролизу, в отличие от ГТФ на β -субъединице, где при полимеризации происходит гидролиз ГТФ до ГДФ. При полимеризации молекулы тубулина объединяются таким образом, что с β -субъединицей одного белка ассоциирует α –субъединица следующего белка и т.д. Следовательно, отдельные протофибриллы возникают как полярные нити, и соответственно вся микротрубочка тоже является полярной структурой, имеющей быстро растущий (+)-конец и медленно растущий (-) конец (рис. 268). При достаточной концентрации белка полимеризация происходит спонтанно. Но при спонтанной полимеризации тубулинов происходит гидролиз 362 одной молекулы ГТФ, связанной с β -тубулином. Во время наращивания длины микротрубочки связывание тубулинов происходит с большей скоростью на растущем (+)-конце. Но при недостаточной концентрации тубулина микротрубочки могут разбираться с обоих концов. Разборке микротрубочек способствует понижение температуры и наличие ионов Са ++ Существует ряд веществ, которые влияю на полимеризацию тубулина. Так, алкалоид колхицин, содержащийся в безвременнике осеннем (Colchicum autumnale) , связывается с отдельными молекулами тубулина и предотвращает их полимеризацию. Это приводит к падению концентрации свободного тубулина, способного к полимеризации, что вызывает быструю разборку цитоплазматических микротрубочек и микротрубочек веретена деления. Таким же действие обладают колцемид и нокодозол, при отмывании которых происходит полное восстановление микротрубочек. Стабилизирующим действие на микротрубочки обладает таксол, который способствует полимеризации тубулина даже при его низких концентрациях. Все это показывает, что микротрубочки являются очень динамичными структурами, которые могут достаточно быстро возникать и разбираться. В составе выделенных микротрубочек обнаруживаются ассоциированные с ними дополнительные белки, т.н. МАР-белки (МАР- microtubule accessory proteins). Эти белки, стабилизируя микротрубочки, ускоряют процесс полимеризации тубулина (рис. 269). В последнее время процесс сборки и разборки микротрубочек стали наблюдать в живых клетках. После введения в клетку меченых флуорохромами антител к тубулину и при использовании электронных систем усиления сигнала в световом микроскопе, можно видеть, что в живой клетке микротрубочки растут, укорачиваются, исчезают, т.е. постоянно находятся в динамической нестабильности. Оказалось, что среднее время полужизни цитоплазматических микротрубочек составляет всего лишь 5 минут. Так за 15 минут около 80% всей популяции микротрубочек обновляется. При этом отдельные микротрубочки 363 могут на растущем конце медленно (4-7 мкм\мин) удлиняться, а затем достаточно быстро (14-17 мкм\мин) укорачиваться. В живых клетках микротрубочки в составе веретена деления имеют время жизни около 15-20 сек. Считается, что динамическая нестабильность цитоплазматических микротрубочек связана с задержкой гидролиза ГТФ, это приводит к тому, что на (+)-конце микротрубочки образуется зона, содержащая негидролизованные нуклеотиды (“ГТФ-колпачок”). В этой зоне молекулы тубулина связываются с большим сродством друг к другу, и, следовательно, скорость роста микротрубочки возрастает. Наоборот, при потере этого участка, микротрубочки начинают укорачиваться. Однако 10-20% микротрубочек остаются относительно стабильными достаточно долгое время (до нескольких часов). Такая стабилизация наблюдается в большой степени в дифференцированных клетках. Стабилизация микротрубочек связана или с модификацией тубулинов или с их связыванием с дополнительными (МАР) белками микротрубочек и с другими клеточными компонентами. Ацетилирование лизина в составе тубулинов значительно увеличивает стабильность микротрубочек. Другим примером модификации тубулинов может быть удаление терминального тирозина, что также характерно для стабильных микротрубочек. Эти модификации обратимы. Сами микротрубочки не способны к сокращению, однако они являются обязательными компонентами многих движущихся клеточных структур, таких как реснички и жгутики, как веретено клетки во время митоза, как микротрубочки цитоплазмы, которые обязательны для целого ряда внутриклеточных транспортов, таких как экзоцитоз, движение митохондрий и др. В целом же роль цитоплазматических микротрубочек может быть сведена к двум функциям: скелетной и двигательной. Скелетная, каркасная, роль заключается в том, что расположение микротрубочек в цитоплазме 364 стабилизирует форму клетки; при растворении микротрубочек клетки, имевшие сложную форму, стремятся приобрести форму шара. Двигательная роль микротрубочек заключается не только в том, что они создают упорядоченную, векторную, систему движения. Микротрубочки цитоплазмы в ассоциации со специфическими ассоциированными моторными белками образуют АТФ-азные комплексы, способные приводить в движение клеточные компоненты. Практически во всех эукариотических клетках в гиалоплазме можно видеть длинные неветвящиеся микротрубочки. В больших количествах они обнаруживаются в цитоплазматических отростках нервных клеток, в отростках меланоцитов, амеб и других изменяющих свою форму клетках (рис. 270). Они могут быть выделены сами или же можно выделить их образующие белки: это те же тубулины со всеми их свойствами. Центры организации микротрубочек. Рост микротрубочек цитоплазмы происходит полярно: наращивается (+)- конец микротрубочки. Так как время жизни микротрубочек очень коротко, то должно постоянно происходить образование новых микротрубочек. Процесс начала полимеризации тубулинов, нуклеация, происходит в четко ограниченных участках клетки, в т.н. центрах организации микротрубочек (ЦОМТ). В зонах ЦОМТ происходит закладка коротких микротрубочек, обращенных своими (-)- концами к ЦОМТ. Считается, что в зонах ЦОМТ (--)-концы заблокированы специальными белками, предотвращающими или ограничивающими деполимеризацию тубулинов. Поэтому при достаточном количестве свободного тубулина будет происходить наращивание длины микротрубочек, отходящих от ЦОМТ. В качестве ЦОМТ в клетках животных участвуют главным образом клеточные центры, содержащие центриоли, о чем будет сказано позже. Кроме того в качестве ЦОМТ может служить ядерная зона, и во время митоза полюса веретена деления. Наличие центров организации микротрубочек доказывается прямыми экспериментами. Так, если в живых клетках полностью деполимеризовать 365 микротрубочки или с помощью колцемида или путем охлаждения клеток, то после снятия воздействия первые признаки появления микротрубочек будут появляться в виде радиально расходящихся лучей, отходящих от одного места (цитастер). Обычно у клеток животного происхождения цитастер возникает в зоне клеточного центра. После такой первичной нуклеации микротрубочки начинают отрастать от ЦОМТ и заполнять всю цитоплазму. Следовательно, растущие периферические концы микротрубочек будут всегда (+)-концами, а (-)- концы будут располагаться в зоне ЦОМТ (рис. 271, 272). Цитоплазматические микротрубочки возникают и расходятся от одного клеточного центра, с которым многие теряют связь, могут быстро разбираться, или, наоборот, могут стабилизироваться при ассоциации с дополнительными белками. Одно из функциональных назначений микротрубочек цитоплазмы заключается в создании эластичного, но одновременно устойчивого внутриклеточного скелета, необходимого для поддержания формы клетки. Найдено, что у дисковидных по форме эритроцитов амфибий по периферии клетки лежит жгут циркулярно уложенных микротрубочек; пучки микротрубочек характерны для различных выростов цитоплазмы (аксоподии простейших, аксоны нервных клеток и т.д.). Действие колхицина, вызывающего деполимеризацию тубулинов, сильно меняет форму клетки. Так, если отросчатую и плоскую клетку в культуре фибробластов обработать колхицином, то она теряет полярность. Точно таким же образом ведут себя другие клетки: колхицин прекращает рост клеток хрусталика, отростков нервных клеток, образование мышечных трубок и т.д. Так как при этом не исчезают элементарные формы присущего клеткам движения, такие, как пиноцитоз, ундулирующие движения мембран, образование мелких псевдоподий, то, роль микротрубочек заключается в образовании каркаса для поддержания клеточного тела, для стабилизации и укрепления клеточных выростов. Кроме того, микротрубочки участвуют в процессах роста клеток. Так, 366 у растений в процессе растяжения клеток, когда за счет увеличения центральной вакуоли происходит значительный рост объема клеток, большие количества микротрубочек появляются в периферических слоях цитоплазмы. В этом случае микротрубочки, так же как и растущая в это время клеточная стенка, как бы армируют, механически укрепляют цитоплазму. Создавая такой внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения внутриклеточных компонентов, задавать своим расположением пространства для направленных потоков разных веществ и для перемещения крупных структур. Так, в случае меланофоров (клетки, содержащие пигмент меланин) рыб при росте клеточных отростков гранулы пигмента передвигаются вдоль пучков микротрубочек. Разрушение микротрубочек колхицином приводит к нарушению транспорта веществ в аксонах нервных клеток, к прекращению экзоцитоза и блокаде секреции. При разрушении микротрубочек цитоплазмы происходит фрагментация и разбегание по цитоплазме аппарата Гольджи, разрушение митохондриального ретикулума. Долгое время считалось, что участие микротрубочек в движении цитоплазматических компонентов заключается лишь в том, что они создают систему упорядоченного движения. Иногда в популярной литературе цитоплазматические микротрубочки сравнивают с железнодорожными рельсами, без которых движение поездов невозможно, но которые сами по себе ничего не двигают. Одно время предполагали, что двигателем, локомотивом, может быть система актиновых филаментов, но оказалось, что механизм внутриклеточного перемещения различных мембранных и немембранных компонентов связан с группой иных белков. Прогресс был достигнут при изучении т.н. аксонального транспорта в гигантских нейронах кальмара. Аксоны, отростки нервных клеток, могут иметь большую длину и заполнены большим числом микротрубочек и нейрофиламентов. В аксонах живых нервных клеток можно наблюдать 367 перемещение различных мелких вакуолей и гранул, которые двигаются как от тела клетки к нервному окончанию (антероградный транспорт), так и в противоположном направлении (ретроградный транспорт). Если аксон перетянуть тонкой лигатурой, то такой транспорт приведет к скоплению мелких вакуолей по обе стороны от перетяжки. Вакуоли, двигающиеся антероградно, содержат различные медиаторы, в том же направлении могут двигаться и митохондрии. Ретроградно двигаются вакуоли, образовавшиеся в результате эндоцитоза при рециклировании мембранных участков. Эти движения происходят с относительно высокой скоростью: от тела нейрона – 400 мм в сутки, в направлении к нейрону –200-300 мм в сутки (рис. 273). Оказалось, что из отрезка гигантского аксона кальмара можно выделить аксоплазму, содержимое аксона. В капле выделенной аксоплазмы продолжается движение мелких вакуолей и гранул. С помощью видеоконтрастного устройства можно видеть, что движение мелких пузырьков происходит вдоль тонких нитчатых структур, вдоль микротрубочек. Из этих препаратов были выделены белки, ответственные за движение вакуолей. Один из них кинезин, белок с молекулярным весом около 300 тыс. Он состоит из двух сходных тяжелых полипептидных цепей и нескольких легких. Каждая тяжелая цепь образует глобулярную головку, которая при ассоциации с микротрубочкой обладает АТФ- азной активностью, в то время как легкие цепи связываются с мембраной пузырьков или других частиц (рис. 274). При гидролизе АТФ изменяется конформация молекулы кинезина и генерируется перемещение частицы в направлении к (+)-концу микротрубочки. Оказалось возможным приклеить, иммобилизовать молекулы кинезина на поверхности стекла; если к такому препарату в присутствии АТФ добавить свободные микротрубочки, то последние начинают двигаться. Наоборот, можно иммобилизовать микротрубочки, но добавить к ним мембранные пузырьки, связанные с кинезином – пузырьки начинают двигаться вдоль микротрубочек. 368 Существует целое семейство кинезинов, обладающих сходными моторными головками, но отличающихся хвостовыми доменами. Так, цитозольные кинезины участвуют в транспорте по микротрубочкам везикул, лизосом и других мембраных органелл. Многие из кинезинов связываются специфически со своими грузами. Так некоторые участвуют в переносе только митохондрий, другие – только синаптических пузырьков. Кинезины связываются с мембранами через мембранные белковые комплексы – кинектины. Кинезины веретена деления участвуют в образовании этой структуры и в расхождении хромосом. За ретроградный транспорт в аксоне отвечает другой белок – цитоплазматический динеин (рис. 275). Он состоит из двух тяжелых цепей – головок, взаимодействующих с микротрубочками, нескольких промежуточных и легких цепей, которые связываются с мембранными вакуолями. Цитоплазматический динеин является моторным белком, переносящим грузы к минус-концу микротрубочек. Динеины также делятся на два класса: цитозольные – участвующие в переносе вакуолей и хромосом, и аксонемные – отвечающие за движение ресничек и жгутиков. Цитоплазматические динеины и кинезины были обнаружены практически во всех типах клеток животных и растений. Таким образом, и в цитоплазме движение осуществляется по принципу скользящих нитей, только вдоль микротрубочек перемещаются не нити, а короткие молекулы – движетели, связанные с перемещающимися клеточными компонентами. Сходство с актомиозиновым комплексом этой системы внутриклеточного транспорта заключается в том, что образуется двойной комплекс (микротрубочка + движетель), обладающий высокой АТФ-азной активностью. Как мы видим, микротрубочки образуют в клетке радиально расходящиеся поляризованные фибриллы, (+)-концы которых направлены от центра клетки к периферии. Наличие же (+) и (-)-направленных моторные белков (кинезинов и 369 динеинов) создает возможность для переноса в клетке её компонентов как от периферии к центру (эндоцитозные вакуоли, рециклизация вакуолей ЭР и аппарата Гольджи и др), так и от центра к периферии (вакуоли ЭР, лизосомы, секреторные вакуоли и др) (рис. 276). Такая полярность транспорта создается за счет организации системы микротрубочек, возникающих в центрах их организации, в клеточном центре. Глава 23. Клеточный центр Итак, в клетках животных, растений и одноклеточных микротрубочки поляризованы, так что большей частью их растущие (+)-концы направлены к периферии клетки. Это связано с тем, что МТ начинают свой рост от специальных участков в клетке, от центров организации микротрубочек (ЦОМТ). Некоторые из ЦОМТ имеют сложную морфологическую организацию, другие устроены иначе. Различные ЦОМТ можно разделить на несколько групп: центросомные клеточные центры, и центры организации микротрубочек, не имеющие четкой локализации. Так например, в клетках высших растений полимеризация МТ происходит по периферии клеточного ядра, от которого МТ расходятся радиально. Сходная картина наблюдается при регенерации МТ в гигантских клетках слюнных желез двукрылых. В ряде случаев новообразование МТ, их закладка, нуклеация, может происходить в цитоплазме вне связи со специальными зонами или структурами. Но в большинстве случаев в интерфазных клетках животных организмов образование и рост МТ происходит от клеточного центра, содержащего специальные образования – центросомы, которые большей частью могут содержать сложно организованные центриоли, или же не иметь их. Центросомы и центриоли Центросомы были обнаружены и описаны сто лет назад (Флемминг, 1875; Бенеден, 1876) – это очень мелкие тельца, размер которых находится на границе разрешающей способности светового микроскопа, обычно располагающиеся в геометрическом центре клетки, откуда и их название. В некоторых объектах 370 удавалось видеть, что мелкие плотные тельца (центриоли), обычно в паре (диплосома), окружены зоной более светлой цитоплазмы (собственно центросома), от которой отходят радиально тонкие фибриллы (центросфера) (рис. 277). Центросомы характерны и обязательны для клеток животных, и нет у высших растений, у низших грибов и некоторых простейших. Было замечено, что центросомы в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В неделящихся клетках центросомы часть определяют полярность клеток эпителия и располагаются вблизи аппарата Гольджи. Такая связь центросом с аппаратом Гольджи характерна для многих клеток, в том числе для клеток крови и нервных клеток. Часто центросомы лежат рядом с ядром, располагаясь в зонах его впячивания. Например, в полиморфных лейкоцитах (нейрофилы) центросома лежит внутри подкововидного впячивания ядра (рис. 278). Типичное строение клеточный центр имеет в клетках животных. Он представляет собой зону, состоящую из центриолей и окружающей их аморфной фибриллярной массы или матрикса. В ряде случаев в состав клеточного центра или центросомы входит только эта фибриллярная масса, от которой отходят микротрубочки (см. ниже). Наиболее же часто кроме матрикса в состав клеточного центра входят центриоли, как мелкие тельца, с трудом наблюдаемые в световом микроскопе. Тонкое строение центриолей удалось изучить только с помощью электронного микроскопа. Основу строения центриолей составляют расположенные по окружности девять триплетов микротрубочек, образующие таким образом полый цилиндр (рис. 279). Его ширина около 0, 15 мкм, а длина такого цилиндра 0,3-0,5 мкм (хотя встречаются центриоли, достигающие в длину несколько микрон) (рис. 280). Первая микротрубочка триплета (А-микротрубочка) имеет диаметр около 25 нм и толщину стенки 5 нм, которая состоит из 13 глобулярных субъединиц. 371 Длина каждого триплета равна длине центриоли. Вторая и третья (В и С) микротрубочки отличаются от А-микротрубочки тем, что они являются неполными, содержат 11 субъединиц и вплотную примыкают к своим соседям. Каждый триплет располагается к радиусу такого цилиндра под углом около 40 0 Кроме микротрубочек в состав центриоли входит ряд дополнительных структур. От А-микротрубочки отходят так называемые “ручки”, выросты, один из которых (внешний) направлен к С- микротрубочке соседнего триплета, а другой (внутренний) – к центру цилиндра. Обычно в интерфазных клетках всегда присутствуют две центриоли, располагающиеся рядом друг с другом, образуя дуплет центриолей, или диплосому (рис. 281). В диплосоме центриоли располагаются под прямым углом по отношению друг к другу. Из двух центриолей различают “материнскую” и “дочернюю”, продольная ось последней перпендикулярна продольной оси материнской центриоли. Обе центриоли сближены своими концами так, что проксимальный конец дочерней центриоли как бы смотрит на поверхность материнской. В дистальном участке материнской центриоли располагается аморфный материал в виде выростов или шпор – это придатки. Их нет на дочерней центриоли (рис. ). Дочерняя центриоль несколько отличается от материнской. Центральная часть цилиндра центриоли занята структурой, напоминающей тележное колесо; она имеет центральную “втулку” диаметром около 25 нм и 9 спиц, направленных по одной к А-микротрубочке каждого из триплетов. Такие структуры внутри центриоли расположены в одном из её концов, проксимальном, что делает строение цилиндра центриоли полярным. На дистальном конце центриоли внутри её нет таких структур. Объем, занимаемый внутри центриоли втулкой со спицами, может составлять у разных клеток от 3\4 до 1\5 длины центриоли. У некоторых видов втулка отсутствует или заменена скоплением аморфного материала. Торцы центриолярного цилиндра, кроме системы втулки и спиц на проксимальном конце, ничем не закрыты. 372 Систему микротрубочек центриоли обычно описывают формулой 9 + 0, или (9х3) + 0, подчеркивая отсутствие микротрубочек в её центральной части. Вокруг каждой центриоли расположен бесструктурный, или тонковолокнистый матрикс. Сами микротрубочки триплетов погружены в аморфный материал т.н. муфты или оправы. Если выделенные центриоли обработать 0,6М раствором NaCl, то произойдет полная экстракция микротрубочек, но центриоль как таковая не растворится: вместо нее останется цилиндрическая структура, имеющая девять полых отверстий, некогда занимавшихся триплетами микротрубочек. Поэтому все схемы центриолей в этой книге, как и во многих других значительно упрощены и не включают материал муфты центриолярного цилиндра. Часто около центриолей и в связи с ним можно обнаружить несколько дополнительных структур: сателлиты, фокусы схождения микротрубочек, исчерченные волокнистые корешки, дополнительные микротрубочки, образующие особую зону – центросферу вокруг центриоли (рис. 282). При исследовании в электронном микроскопе интерфазных центриолей было найдено, что лучистое сияние центросферы, обнаруживаемое в световом микроскопе, представляет собой большое число микротрубочек, радиально расходящихся от зоны диплосомы. В диплосоме лишь одна из центриолей, материнская, содержит ряд дополнительных структур. Одни из них, перицентриолярные сателлиты, состоят из имеющей тонкое фибриллярное строение конусовидной ножки, расположенной на стенке центриоли, и головки, заканчивающейся на этой ножке. Ножки сателлитов часто имеют поперечную исчерченность (рис. 284). Количество таких перицентриолярных сателлитов непостоянно, они могут располагаться на разных уровнях по длине центриоли. Кроме этих структур рядом с диплосомой, но не связанные с ней структурно, могут располагаться плотные мелкие (20-40 нм) тельца, к которым подходят одна или несколько микротрубочек (фокусы схождения микротрубочек). Микротрубочки отходят и от головок сателлитов. Эти центросомные 373 микротрубочки не отходят непосредственно от микротрубочек цилиндров центриолей, а связаны или с сателлитами, или с матриксом. Такие микротрубочки и образуют как бы лучистую сферу (центросферу) вокруг центриоли, где (-)-концы МТ связаны с ЦОМТ, а (+)-концы радиально расходятся на периферию клетки. При образовании центросферы в интерфазной клетке только специальные структуры центриоли, сателлиты и матрикс, каким- то образом связаны с образованием микротрубочек; микротрубочки самих центриолей в этом процессе не участвуют. Было найдено, что восстановление прицентриолярных микротрубочек после их деполимеризации на холоду происходит за счет появления новых микротрубочек, отходящих от головок сателлитов. Таким образом, можно считать, что эти дополнительные структуры являются центрами, на которых происходит сборка микротрубочек из тубулинов ( центры организации микротрубочек – ЦОМТ). Химия центриолей изучена слабо, потому что еще не разработаны методы получения этой структуры в виде чистой фракции. Трудности биохимического изучения центриолей связаны с тем, что это одиночная клеточная структура, имеющая объем всего 0, 03 мкм 3 . Для сравнения, вспомним, что в клетке имеется: около тысячи штук митохондрий, около миллиона рибосом, около сотни хромосом, около 1 мм 2 мембран. Есть все основания говорить о том, что в состав микротрубочек центриолей входят тубулины. Это доказывается тем, что колхицин прекращает рост микротрубочек в процентриолях, возникающих вблизи материнской центриоли. Предположения о возможной химической природе остальных элементов центриоли основаны главным образом на данных, полученных из химии ресничек и жгутиков, имеющих много сходных черт строения с центриолями. Данные о химическом строении центриолей получены главным образом с помощью иммунохимических методов. В изолированных базальных тельцах простейшего хламидомонады обнаружено более 200 различных белков, среди 374 которых выявлены четыре вида тубулинов, в том числе γ - тубулин, центрин, перицентрин, белок р210 и многие другие. В интерфазных клетках центриоли оказываются связаны с ядром и с ядерной мембраной. При выделении ядер практически все центриоли клеток печени и селезенки крыс оказываются в этой фракции. Связь центриолей с ядром осуществляется главным образом промежуточными филаментами. Если живые клетки подвергнуть ультрацентрифугированию, то центриоли опускаются к центробежному полюсу вместе с ядрами. Центросомный цикл Было обнаружено, что строение и активность центросом меняются в зависимости от периода клеточного цикла, в течение которого клеточный центр претерпевает тоже циклические изменения (рис. 283). Целесообразнее начать рассмотрение циклических изменений в структуре центросом с митоза. Начиная с профазы и кончая телофазой, центросомы имеют сходное строение, несмотря на то, что за время митоза происходит ряд существенных клеточных перестроек: конденсация хромосом, разрушение ядерной оболочки, образование веретена деления, расхождение хромосом. В митозе в клеточных центрах (их два, по одному на каждый полюс клетки) находится по диплосоме. Как полагается, дочерняя центриоль своим концом направлена на материнскую. Материнская центриоль на всех стадиях митоза окружена довольно широкой (до 0,3 мкм) зоной тонких фибрилл – центриолярное фибриллярное гало (рис. 279). От этого гало радиально отходят микротрубочки. Важно подчеркнуть, что у дочерних центриолей ни гало, ни отходящих от центриолей микротрубочек нет. В это время происходит формирование веретена митотического аппарата, состоящего из микротрубочек. Эта структура действительно имеет форму веретена, где на концах его на полюсах клетки располагаются диплосомы, окруженные радиальными микротрубочками (центросфера). В данном случае можно говорить о том, что зоны диплосом, клеточные центры, являются центрами организации 375 (полимеризации) микротрубочек. В пользу этого говорят следующие факты: после исчезновения микротрубочек веретена и центросферы, которые происходят при действии холода или колхицина, новые микротрубочки возникают главным образом в районе материнских центриолей, диплосом, в каждом из полюсов клетки. Интересно, что рост новых микротрубочек не связан с микротрубочками триплетов центриолярного цилиндра, они начинают отрастать от зоны гало, расположенной на материнской центриоли. Важно отметить, что в это время на материнских центриолях (как и на дочерних) нет сателлитов, и в это же время цитоплазма теряет микротрубочки: микротрубочки цитоплазмы разбираются, а пул освободившихся тубулиновых мономеров идет на образование микротрубочек веретена и центросферы, которые образуются на фибриллярном гало, как на ЦОМТ. Этот процесс полимеризации митотических микротрубочек отражает первую форму активности центриолярного аппарата (рис. ). Если в профазе облучить центриоль лазерным микролучем, то образование веретена останавливается. Примерно сходное строение имеют клеточные центры на всех стадиях митоза, но к телофазе толщина фибриллярного гало уменьшается. К концу телофазы, когда произошло разделение клетки надвое, а хромосомы начали деконденсироваться и образовывать новые интерфазные ядра, происходит разрушение веретена деления, его микротрубочки деполимеризуются. Клеточные центры при этом меняют свою структуру. Материнская и дочерняя центриоли теряют взаимно перпендикулярное расположение и отходят друг от друга на небольшие (0,5-2мкм) расстояния, но все же держатся в одном месте. Вокруг материнской центриоли гало и микротрубочки не выявляются. В это время микротрубочек в цитоплазме также практически нет. В начале G 1 -периода на поверхности материнской центриоли возникают сателлиты, имеющие ножку и головку, от которой радиально отходят микротрубочки, которые начинают расти в длину и заполнять собой цитоплазму 376 (рис. 284а). Следовательно, вторая форма активности клеточного центра – образование цитоплазматических микротрубочек в интерфазных клетках. Надо подчеркнуть, что активной здесь является только материнская центриоль, которую легко узнать по придаткам в ее дистальной части. Если считать клеточные центры основными (если не единственными) местами образования цитоплазматических микротрубочек, то общее количество последних должно быть равно числу микротрубочек, отходящих от центриолей. При исследовании в электронном микроскопе оказалось, что от клеточных центров в интерфазе отходит всего лишь несколько десятков микротрубочек, а в цитоплазме их так много, что с помощью иммунофлуоресцентного метода их трудно подсчитать. Это дает основание предполагать, что по мере роста микротрубочек часть из них теряет связь с областью центриолей и может находиться в цитоплазме долгое время. Центросомы же индуцируют полимеризацию новых микротрубочек, которые приходят на смену постепенно деполимеризующимся старым. Вероятно, в цитоплазме есть несколько генераций микротрубочек: “старые”, не связанные с клеточным центром, и новые, растущие от центросом. Таким образом, в клетке происходит как бы конвейерная смена и репродукция цитоплазматических микротрубочек. Если клеткам запретить переходить в S-период, они могут существовать в фазе клеточного покоя (Go-период) (рис. 285). В это время материнская центриоль продолжает функционировать, как центр образования микротрубочек цитоскелета. Но одновременно она может проявить еще одну форму активности – образовать ресничку, вырост плазматической мембраны, заполненный аксонемой (осевой нитью), состоящей из девяти дублетов микротрубочек. Эти микротрубочки отрастают, как от затравок, от А- и В-микротрубочек триплетов материнской центриоли в дистальной ее части. Это – третья форма активности центриолей как центров организации микротрубочек (см. ниже). При наступлении S-периода (или в середине его) клеточный центр приступает к четвертой форме своей активности: происходит удвоение числа 377 центриолей. В это время около каждой из разошедшихся еще в конце телофазы центриолей, материнской и дочерней, происходит закладка новых центриолярных цилиндров – процентриолей (рис. 284б). В районе проксимальных концов каждой центриоли перпендикулярно длинной оси закладывается сначала девять синглетов (одиночных) микротрубочек, затем они преобразуются в девять дуплетов, а потом – в девять триплетов растущих микротрубочек новых центриолярных цилиндров. Закладка процентриолей происходит на проксимальных концах центриолей; в этом месте растут новые поколения центриолей, тоже с проксимального конца. Во время роста процентриолей здесь можно видеть центральную “втулку” со спицами. Благодаря такому росту структур образуется сначала короткая дочерняя центриоль – процентриоль - которая затем дорастает до размера материнской. Этот способ увеличения числа центриолей был назван дупликацией. Важно отметить, что размножение центриолей не связано с их делением, почкованием или фрагментацией, а происходит путем образования зачатка, процентриоли, вблизи и перпендикулярно к исходной центриоли. Правда, последнее условие соблюдается не во всех объектах, у некоторых оомицетов при дупликации центриоли происходит сначала расхождение центриолей, рост втулки, затем рост микротрубочек вдоль продолжения оси исходной центриоли, и центриоли располагаются конец в конец. Интересно, что триплеты в таких новых центриолях имеют угол наклона, противоположный таковому в материнской центриоли. Факт удвоения центриолей привел некоторых исследователей к предположению, что центриоли, так же как митохондрии и пластиды, принадлежат к саморедуплицирующимся компонентам цитоплазмы, хотя прямых данных о наличии ДНК в составе центриолей нет. 378 В S-периоде во время удвоения (дупликации) центриолей материнская продолжает проявлять вторую форму активности: она продолжает быть центром образования цитоплазматических микротрубочек. В результате процесса дупликации около каждой центриоли вырастает новая дочерняя центриоль (первая материнская центриоль и дочерняя на бывшей дочерней центриоли могут считаться как бы бабушкой и внучкой). Поэтому в клетке после завершения S-периода находятся уже две диплосомы (а всего четыре центриолярных цилиндра) (рис. 286). После этого наступает следующий период клеточного цикла, постсинтетический (G 2 -период), когда в клетке начинается подготовка к очередному делению. В это время исчезают сателлиты на материнской диплосоме (так можно назвать старую материнскую центриоль с новой дочерней), а обе материнские центриоли в обеих диплосомах покрываются фибриллярным гало, от которого в профазе начинают отрастать митотические микротрубочки. Параллельно этому в цитоплазме происходит исчезновение микротрубочек, и клетка стремится приобрести шаровидную форму. Вся такая последовательность событий повторяется от цикла к циклу у клеток, способных к длительному размножению. В большинстве случаев клетки организма находятся в G 0 -периоде, поэтому у них центриоль участвует в полимеризации цитоплазматических микротрубочек и в образовании реснички (или множества ресничек). В последнем случае она входит в состав так называемого базального тельца. Обычно в клетку после деления попадают два центриолярных цилиндра в составе диплосомы. В различных экспериментальных условиях можно запретить разделение клетки надвое и получить клетки с удвоенным числом хромосом (полиплоидные клетки). Совершенно очевидно, что в таких клетках будет и удвоенное число центриолей. Клетки могут снова вступать в клеточный цикл, при этом будет удваиваться как количество ДНК, так и число центриолей. Было обнаружено, что у тетраплоидных (с четырехкратным набором хромосом) 379 клеток печени в G 0 -периоде в цитоплазме видны не два, а четыре центриолярных цилиндра, а в полюсах при делении таких клеток было обнаружено по две диплосомы в каждом. Аналогичная ситуация замечена и у других полиплоидных клеток (мегакариоциты костного мозга, полиплоидные гибридные клетки и др.). В связи с этим предположили, что между числом плоидности клетки (числом хромосомных наборов) и числом центриолей существует прямая связь. Нарушения центриолярного цикла могут вызвать ряд патологических изменений клеток, в первую очередь появление многополюсных митозов. Так, при действии β-меркаптоэтанола происходит блокада нормального митоза, при этом диплосомы расходятся на отдельные центриоли. При отмывании от этого вещества клетка снова приступает к делению, но в этом случае каждая центриоль активируется и образует полюс веретена. Таким образом, возникают трех- или четырехполюсные митозы, приводящие к неравномерному распределению хромосом между дочерними клетками. Это в свою очередь приводит к изменению числа хромосом (анэуплоидия), которое часто вызывает гибель клетки. Иногда при образовании многополюсных митозов в некоторых полюсах отсутствуют центриоли: в полюсе располагается только фибриллярный материал центросомы (бесцентриолярные полюса). Итак, в подавляющем большинстве клеток млекопитающих центросомы участвуют в полимеризации тубулинов и являются структурами, играющими роль центров организации микротрубочек. Микротрубочки самих центриолей являются затравками для полимеризации тубулинов только в одном случае – при росте аксонемы реснички, когда центриоль становится базальным тельцем. Это временное состояние: при переходе клеток к делению реснички могут исчезать, а базальное тельце снова может выполнять роль центриоли, участвуя в организации цитоплазматических микротрубочек или микротрубочек митотического веретена. Только в этих случаях центрами организации микротрубочек являются не сами центриолярные цилиндры, а 380 перицентриолярный материал (головка сателлитов, околоцентриолярный матрикс, гало и т.д.). Следовательно, центриоль как таковую нужно рассматривать как один из компонентов более сложной структуры – клеточного центра или центросомы. Эта оговорка связана с тем, что у всех высших растений ЦОМТ не содержит центриолей. Более того, в раннем эмбриогенезе позвоночных животных образуются веретена деления, не имеющие центриолей в полюсах. По всей вероятности в последних случаях центриоли возникают позже заново, а не образуются путем “репликации”. Вопрос о процессе образования центриолей далек от решения. Остается неясным процесс появления процентриолей. В процессе эмбриогенеза отмечены случаи возникновения центриолей de novo у морского ежа, у моллюсков, у мышей. Так, в эмбриогенезе мыши центриоли появляются только после 1-2 делений клеток бластулы, несмотря на то, что сами клеточные деления происходят нормально, за исключением того, что в полюсах деления в зоне бесструктурной центросомы центриоли отсутствуют. С другой стороны, если в соматических клетках культуры ткани уничтожить центросому с центриолью с помощью микрооблучения, то новые центриоли не возникают. Базальные тельца. Строение и движение ресничек и жгутиков. Как уже указывалось, у многих клеток животных, вышедших из клеточного цикла, в G 0 -стадии центриоли принимают участие в образовании аппарата движения – ресничек. Их две группы: кинетоцилии, характерные для специальных эпителиев (ресничные эпителии трахеи, яйцеводов) или свободно плавающих клеток (сперматозоиды, простейшие), и так называемые первичные реснички, встречающиеся во многих клетках, не обладающих способностью к движению. Вначале рассмотрим строение кинетоцилей – подвижных ресничек и жгутиков. В световом микроскопе эти структуры видны как тонкие выросты клетки, в их основании в цитоплазме видны хорошо красящиеся мелкие гранулы – базальные тельца, аналоги центриолей (рис. 287). Клетки, имеющие реснички 381 или жгутики, обладают способностью двигаться, будучи в свободном состоянии, или же перемещать жидкости в случае, если клетки неподвижны. Свободноживущие одноклеточные организмы, снабженные одним или несколькими жгутиками, обычно движутся тем концом вперед, который несет жгутики. Иной способ движения можно видеть у спермиев некоторых животных: жгутик, располагаясь сзади, толкает тело клетки вперед. Скорость движения клеток за счет работы жгутиков может достигать очень большой величины (до 5 мм / мин). Множественные реснички также могут обеспечивать движение свободноживущих клеток, таких как инфузории или некоторые жгутиконосцы. Реснички эпителиальных клеток многих беспозвоночных и позвоночных животных обеспечивают поток жидкостей вдоль поверхности таких клеток. Число ресничек на клетку может достигать 300 в эпителии трахеи; у инфузории туфельки на клетку приходится 10-14 тыс. рядами расположенных ресничек. При движении ресничек и жгутиков не происходит уменьшения их длины, поэтому неправильно называть это движение сокращением. Траектория движения ресничек очень разнообразна (рис. 288). В различных клетках это движение может быть маятникообразным, крючкообразным, воронкообразным или волнообразным. У многоресничных клеток (инфузории, клетки ресничного эпителия) движение ресничек не хаотично, а строго упорядочено. В этом случае реснички расположены рядами. В продольном ряду отдельные реснички начинают движение и проходят отдельные его фазы по очереди, метахронно. В поперечном же ряду все реснички находятся в одной фазе движения (синхронны). Это создает движущую волну по поверхности клетки (рис. )289. Общая архитектура реснички представлена на рис. 290, 291. Ресничка представляет собой тонкий цилиндрический вырост цитоплазмы с постоянным диаметром 300 нм. Этот вырост от основания до самой его верхушки покрыт плазматической мембраной. Внутри выроста расположена аксонема, сложная 382 структура, состоящая в основном из микротрубочек. Нижняя, проксимальная часть реснички, базальное тельце, погружена в цитоплазму. Диаметры аксонемы и базального тельца одинаковы (около 200 нм). На поперечном сечении реснички видна плазматическая мембрана, окружающая аксонему. Аксонема в своем составе имеет девять дублетов микротрубочек, образующих внешнюю стенку цилиндра аксонемы. Дублеты микротрубочек слегка повернуты (около 10 0 ) по отношению к радиусу аксонемы. Кроме периферических дублетов микротрубочек в центре аксонемы располагается пара центральных микротрубочек. В целом систему микротрубочек реснички описывают как (9х2)+2. В дублетах микротрубочек также различают А-микротрубочку, состоящую из 13 субъединиц, и В- микротрубочку, неполную, содержащую 11 субъединиц. А-микротрубочка несет на себе ручки, которые направлены к В-микротрубочке соседнего дуплета. От А-микротрубочки к центру аксонемы отходит радиальная связка, или спица, оканчивающаяся головкой, присоединяющейся к центральной муфте, имеющей диаметр около 70 нм, окружающей две центральные микротрубочки. Последние лежат отдельно друг от друга на расстоянии около 25 нм. Таким образом, в аксонеме располагается 20 продольных микротрубочек, в то время как в базальном тельце их 27 (рис. 291, 292). Базальное тельце состоит из 9 триплетов микротрубочек (как и центриоль), имеет ручки, втулку и спицы, расположенные в проксимальной (нижней) ее части. На участке базального тельца, примыкающем к плазматической мембране, есть девять придатков, выступов, идущих от каждого триплета микротрубочек к плазматической мембране и связывающих его с клеточной поверхностью. Базальное тельце и аксонема структурно связаны друг с другом и составляют единое целое: А- и В-микротрубочки триплетов базального тельца продолжаются в А- и В-микротрубочках дуплетов аксонемы. Однако внутренние части аксонемы и базального тельца значительно отличны друг от друга. Часто в 383 зоне перехода базального тела в аксонему наблюдают аморфную поперечную пластинку, которая как бы отделяет эти две части. Центральные микротрубочки аксонемы начинаются от этой пластинки так же, как в этом месте начинается и центральная муфта (капсула) (рис. 290). В основании ресничек и жгутиков часто встречаются исчерченные корешки, или кинетодесмы, представляющие собой пучки тонких (6 нм) фибрилл, обладающих поперечной исчерченностью (рис. 293). Часто такие исчерченные кинетодесмы простираются от базальных телец вглубь цитоплазмы по направлению к ядру. Роль этих структур не ясна. Они не изменяются при действии колхицина, могут встречаться и в составе центриолей интерфазных клеток, не принимающих участия в образовании ресничек. При движении ресничек не происходит изменения их длины, они не “сокращаются”, а изгибаются, бьются. Оказалось, что механически отделенные реснички способны к биению в присутствии АТФ. При отделении ресничек базальные тельца остаются в теле клетки. Это означает, что для механической работы ресничек базальное тело не нужно, а только аксонема участвует в генерации движения. Удалось показать, что за движение ресничек отвечают “ручки”, сидящие на А-микротрубочках. При экстракции компонентов ручек реснички перестают биться в присутствии АТФ. Было найдено, что в состав ручек входят белки динеины. Это большие белковые компоненты, состоящие из 9-12 полипептидных цепей, содержащие 2- 3 глобулярные головки, связанные в общий корешок гибкими хвостами (рис. 294). Каждая головка динеина обладает АТФ-азной активностью, которая возрастает примерно в 6 раз при ассоциации с микротрубочками. В состав каждой ручки входит один белковый комплекс, одна молекула динеина. Так как экстракция ручек прекращает биение ресничек, то можно считать, что именно динеин ответственен за это движение, то есть динеин является мотором или двигателем при биении ресничек. Но каков механизм этого движения? 384 Этот вопрос был решен при использовании выделенных ресничек, лишенных плазматической мембраны, радиальных спиц и связок после частичной обработки аксонем протеазами. Оказалось, что такие аксонемы, содержащие динеиновые ручки, при добавлении к ним АТФ начинают увеличиваться в длину почти до девяти раз и одновременно утончаются. В электронном микроскопе видно, что такая аксонема увеличилась в длину за счет смещения пар микротрубочек одна относительно другой (рис. 295). Другими словами, произошло продольное скольжение дуплетов один относительно другого, аналогично тому, что происходит при сокращении саркомеров в мышце: скольжение миозиновых нитей относительно актиновых. В случае динеина повторные циклы ассоциации с субъединицами тубулина, изменения конформации при связывании АТФ и его гидролизе, вызывают перемещение головок вдоль микротрубочки от (+)-конца к (-)-концу. При этом соседний дуплет двигается к верхушке реснички. Когда ресничка содержит все компоненты, и дуплеты микротрубочек связаны друг с другом и с центральной парой микротрубочек, такие кооперативные смещения дуплетов микротрубочек приводят не к удлинению реснички, а к ее изгибу (рис. 296). Как регулируется последовательное перемещение дуплетов один относительно другого, еще не ясно. Рост ресничек, удлинение микротрубочек их аксонем происходит на вершине реснички. Следовательно, там локализованы (+)-концы микротрубочек. Образование аксонемы ресничек происходит за счет роста А- и В- микротрубочек центриолей, которые в этом случае становятся базальным тельцем. В простейшем случае при образовании одиночных ресничек или так называемых первичных ресничек материнская центриоль подходит к плазматической мембране своим дистальным торцом, связывается с ней своими придатками. В это время начинается рост микротрубочек на (+)- концах А- и В- микротрубочек триплетов. Возникают девять дублетов микротрубочек аксонемы, которые, наращиваясь с (+)-концов на верхушке аксонемы как бы 385 вытягивают плазматическую мембрану, образуя вырост – ресничку. Две центральные микротрубочки возникают в связи с плотным веществом, лежащим на границе бывшей центриоли и выроста плазматической мембраны (рис. 290а). При образовании многоресничных клеток происходит многочисленная репликация центриолей и образование многочисленных ресничек. В ресничном эпителии позвоночных множественные базальные тельца возникают вокруг так называемых дейтеросом – аморфных электронноплотных структур размером от 60 до 700 нм, по периферии которых происходит закладка множественных зачатков базальных телец. Вокруг одной дейтеросомы образуются до десятка новых базальных телец. Они затем мигрируют к плазматической мембране и принимают участие в образовании аксонем (рис. 298). Необходимо отметить, что клетки с множеством ресничек теряют способность к делению и не могут выходить из G 0 -стадии клеточного цикла. На смену им из эпителиального пласта приходят стволовые недифференцированные клетки, которые могут делиться и давать новые поколения многоресничных клеток. Микротрубочки аксонемы устойчивы к действию колхицина, но при росте реснички колхицин полностью прекращает включение новых молекул тубулина, что приводит к торможению роста ресничек. Вторая категория ресничных клеток – клетки с так называемыми первичными ресничками, не обладающими способностью к движению. Практически все типы клеток, за исключением клеток крови, мышц и кишечного эпителия, в G 0 -периоде образуют первичные реснички, которые отличаются от настоящих ресничек, или киноцилий, тем, что они не имеют пары центральных микротрубочек и не способны к движению. Они образуются в результате того, что диплосома подходит к плазматической мембране и от материнской центриоли начинается рост аксонемы, но без двух центральных микротрубочек. Если клетки культуры фибробластов, обладающих в G 0 -периоде 386 такими ресничками, стимулировать к делению, то эти реснички исчезают, а базальное тельце-центриоль начинает свой цикл как обычная центриоль в клетках, способных к делению. Функциональное значение этих первичных ресничек не ясно. Но интересно отметить, что при развитии сенсорных клеток сетчатки их наружные сегменты палочек и колбочек возникают сначала за счет образования первичных ресничек. Возможно, что у нерецепторных клеток, имеющих такие первичные реснички, последние выполняют функции внешних анализаторов, являются как бы «антеннами», на поверхности которых рецепторные молекулы плазматической мембраны могут регистрировать механические и химические сигналы, поступающие из внешней межклеточной среды. Двигательный аппарат бактерий Многие бактерии способны к быстрому движению с помощью своеобразных бактериальных жгутиков или флагелл. Основная форма движения бактерий – с помощью жгутика. Жгутики бактерий принципиально отличны от жгутиков эукариотических клеток. По числу жгутиков их делят на: монотрихи – с одним жгутиком, политрихи – с пучком жгутиков, перитрихи - с множеством жгутиков в разных участках поверхности (рис. 299). Жгутики бактерий имеют очень сложное строение; они состоят из трех основных частей: внешняя длинная волнистая нить (собственно жгутик), крючок, базальное тельце (рис. 300). Жгутиковая нить построена из белка флагеллина. Его молекулярный вес колеблется в зависимости от вида бактерий (40-60 тыс.). Глобулярные субъединицы флагеллина полимеризуются в спирально закрученные нити так, что образуется трубчатая структура (не путать с микротрубочками эукариот!) с диаметром 12-25 нм, полая изнутри. Флагеллины не способны к движению. Они могут спонтанно полимеризоваться в нити с постоянным шагом волны, характерным для каждого вида. В живых бактериальных клетках нарастание 387 жгутиков происходит на их дистальном конце; вероятно, транспорт флагеллинов происходит через полую середину жгутика. Вблизи клеточной поверхности жгутиковая нить, флагелла, переходит к более широкому участку, так называемому крючку. Он имеет длину около 45 нм и состоит из другого белка. Бактериальное базальное тельце не имеет ничего общего с базальным тельцем эукариотической клетки (рис. 290 б, в). Оно состоит из стержня, связанного с крючком и четырех колец – дисков. Два верхних кольца диска, имеющихся у грамотрицательных бактерий, локализованы в клеточной стенке: одно кольцо (L) погружено в липосахаридную мембрану, а второе (P) – в муреиновый слой. Два других кольца - белковый комплекс «S»-статор и «M»-ротор, локализованы в плазматической мембране. К этому комплексу со стороны плазматической мембраны примыкает кольцевой ряд белков Mot A и B. В базальных тельцах грамположительных бактерий имеется только два нижних кольца, связанных с плазматической мембраной. Базальные тельца вместе в крючками можно выделить, оказалось, что они содержат в своем составе около 12 различных белков. Принцип движения бактериальных жгутиков совершенно иной, чем у эукариот. Если у эукариот жгутики движутся за счет продольного скольжения дуплетов микротрубочек, то у бактерий движение жгутиков происходит за счет вращения базального тельца (а именно «S»- и «М»- дисков) вокруг своей оси в плоскости плазматической мембраны. Это было доказано рядом красивых экспериментов. Так, закрепляя жгутики на подложке с помощью антител к флагеллину, исследователи наблюдали вращение бактерий. Было найдено, что многочисленные мутации по флагеллинам (изменение изгиба нити, «курчавость» и т. д.) не сказываются на способности клеток к движению. Мутации же по белкам базального комплекса часто приводят к потере движения. 388 Движение бактериальных жгутиков не зависит от АТФ, а осуществляется благодаря трансмембранному градиенту ионов водорода на поверхности плазматической мембраны. При этом происходит вращение М-диска. В окружении М-диска Mot-белки способны к переносу ионов водорода из периплазматического пространства в цитоплазму (за один оборот переносится до 1000 ионов водорода). При этом происходит вращение жгутика с огромной скоростью, от 5-100 об/сек., что дает возможность бактериальной клетке перемещаться на 25-100 мкм в секунду. Часть VII. Механизмы клеточного деления. |