Курсовая. курсовая. Задача электроснабжения промышленных предприятий возникла одновременно с развитием строительства электрических станций
Скачать 188.73 Kb.
|
1 2 Статический метод расчета нагрузок Формирование электрических нагрузок зависит от ряда случайных факторов. Поэтому числовые значения величин нагрузок, также являются случайными, чаще всего эти величины независимы. Поскольку групповая нагрузка представляет собой систему независимых случайных нагрузок отдельных электроприемников, то при большом их числе групповая нагрузка подчиняется нормальному закону распределения случайных величин. По статическому методу расчетную нагрузку группы приемников определяют двумя интегральными показателями: средней нагрузкой РСР и среднеквадратичным отклонением из уравнения: , где - статический коэффициент, зависящий от закона распределения и принятой вероятности превышения графиком нагрузки Р(t) уровня РР. Среднеквадратичное отклонение для группового графика определяют по формуле: , где – Среднеквадратичная мощность. При введении коэффициента формы ; , Значение принимается различным. В теории вероятности используется правило трех сигм ; что при нормальном распределении соответствует предельной вероятности 0,9973. Вероятности превышения нагрузки на 0,5% соответствует = 2,5, для = 1,65 обеспечивается пяти процентная вероятность ошибки. В практических расчетах вполне достаточна точность 0,5 тогда
Данный метод может применяться для определения расчетных нагрузок цеховых шинопроводов, на шинах низшего напряжения цеховых трансформаторных подстанций, на шинах РУ напряжением 10 кВ, когда значения коэффициента формы КФ находится в пределах 1,0-1,2. Расчетную нагрузку группы приемников определяют из выражений: ; или , где ; . В расчетном методе расчетную нагрузку принимаю равной среднеквадратичной, т.е.: , Для группы приемников с повторно-кратковременным режимом (ПКР) работы применяемое допущение справедливо во всех случаях. Оно приемлемо и для групп приемников с длительным режимом работы, когда число приемников в группе достаточно велико и отсутствует мощные приемники, способные изменить достаточно равномерный групповой график нагрузок. Значение коэффициента КФ достаточно стабильны, если производительность завода или цеха примерно постоянна. Поэтому при проектировании КФ могут быть приняты по опытным данным системы электроснабжения действующего предприятия, аналогичному по технологическому процессу и производительности проектируемому. Средние мощности за наиболее загруженную смену РСР.М., QСР.М для определения расчетной нагрузки находятся при проектировании любым из способов:
где Рном. – суммарная номинальная мощность группы электроприемников приведенная к ПВ = 100 %.
По этому методу расчетная активная нагрузка электроприемника на всех ступенях питающих и распределительных сетей (включая трансформаторы и преобразователи) определяется по средней мощности и коэффициенту максимума из выражения: ; Для определения РР по методу упорядоченных диаграмм все электроприемники разбиваются на подгруппы с примерно одинаковыми режимами работы (коэффициентами использования КИ коэффициентами мощности cos). Затем для каждой группы находят сумму номинальных мощностей. При этом, если режим работы электроприемника отличен от длительного, то используем следующую формулу: , где Рпас – паспортная мощность приемника. ПВ – продолжительность включения электроприемника группы в долях от 1. Значение КМ зависит от КИ данной группы электроприемников и эффективного числа приемников nэф. Эффективное число электроприемников определяется по формуле. . При числе электроприемников в группе 4 и более допускается принимать nэф равным n (действительному значению электроприемников при условии, что отношение номинальной мощности наибольшего электроприемника РНОМ.max к номинальной мощности наименьшего РНОМ.min При m > 3 и КИ 0,2 nэф можно определить по более простой формуле: Когда найденное эффективное число электроприемников nэф оказывается больше действительного n, следует принимать nэф = n; На практике бывают случаи, когда n < 5, тогда nэф, КМ не определяются и – при n = 1 расчетная нагрузка подгруппы равна номинальной, т.е. РН = РИ – – при n = 2 – 5 расчетная нагрузка рассчитывается по коэффициенту нагрузки если КЗ у всех одинаков или если КЗ различны. Практика расчетов показала, что более точно КМ можно найти по формуле: , где КФ – коэффициент формы графика нагрузки; А,В – коэффициенты, учитывающие нагрев проводников Коэффициент КФ рассчитывается по формуле: ; Коэффициенты А и В принимаются равными при КФ 1,1 А = 4,1 В = 3,1 при КФ > 1,1 А = 2,8 В = 1,67 расчетную реактивную нагрузку по этому принимают равной: при КФ 10 QР = 1,1QСР.М при КФ > 10 QР = QСР.М или QР = РРtg
Ряд приемников электроэнергии характеризуются неизменными или мало изменяющимися графиками нагрузок. К таким электроприемникам относятся электроприводы вентиляторов, насосов, воздуходувок, преобразовательных агрегатов, электролизных установок, печи сопротивления, электроприемники бумажной и химической промышленности, поточно-транспортных систем, и многие другие. Коэффициенты включения этих приемников равны 1, а коэффициенты загрузки изменяются мало. Для электроприемников с неизменной или мало изменяющейся во времени нагрузкой, расчетная нагрузка совпадает со средней, за наиболее загруженную смену и может быть определена по удельному расходу электрической энергии на единицу продукции при заданном объеме выпуска за определенный период времени: , где Эуд – удельный расход электроэнергии на единицу продукции, кВтч. NСМ– количество продукции, выпускаемой за смену (производительность установки за смену). ТСМ– продолжительность наиболее загруженной смены, ч. При наличии данных об удельных расходах электроэнергии на единицу продукции в натуральном выражении Эуд при годовом объеме выпускаемой продукции Nгодцеха (предприятия в целом) расчетную нагрузку определяют по формуле: , где Тmax.ц – число часов использования максимума активной нагрузки цеха (принимается по отраслевым инструкциям и справочным данным). Если известны данные об удельных расходах электроэнергии по отдельным технологическим агрегатам Эуд.i, то расчетную нагрузку определяют по формулам: для цеха ; для завода в целом: где РР.О.Ц. и РР.О.З. – расчетные нагрузки за наиболее загруженную смену соответственно общецеховых и общезаводских электроприемников. Nэд.i – производительность отдельных агрегатов. Эуд.i – расход электроэнергии по отдельным агрегатам. Метод удельной нагрузки на единицу произведенной площади Расчетная нагрузка группы электроприемников по удельной мощности определяется по формуле: , где Руд – удельная расчетная мощность на 1 м2 производственной мощности, кВт/м2. F- площадь размещения группы приемников, м2. Удельную нагрузку определяют по статистическим данным. Её значение зависит от рода производства, площади цеха, обслуживаемой магистральным шинопроводом и изменяется в пределах 0,06 – 0,6 кВт/м2. Метод удельной нагрузки на единицу производственной мощности применяемой при проектировании универсальных сетей машиностроения, которые характеризуются большим количеством электроприемников малой и средней мощности, равномерно распределенных по площади цеха. Универсальные сети выполняются магистральными шинопроводами и прокладываются с учетом возможных перемещений технологического оборудования. Из анализа рассмотренных различных методов определения расчетных нагрузок можно сделать следующие выводы: 1. Для определения расчетных нагрузок по отдельным группам электроприемников и узлам с напряжением до 1 кВ в цеховых сетях следует использовать метод упорядоченных диаграмм показателей графиков нагрузок. 2. Для определения расчетных нагрузок на высших ступенях системы электроснабжения (начиная с цеховых шинопроводов и шин цеховых ТП и кончая линиями, питающими предприятие) следует использовать методы расчета, основанные на использовании средней мощности и коэффициентов КМ и КФ. При ориентировочных расчетах на высших ступенях системы электроснабжения возможно применение методов расчета по установленной мощности и КС. Из всех выше перечисленных методов расчетов электрических нагрузок предпочтительней метод коэффициента спроса. Погрешность при расчете данным способом составляет 5-10%. Такая погрешность допустима при проектировании. Таким образом расчет электрических нагрузок данного проекта будет осуществляется методом коэффициента спроса. Метод коэффициента спроса Указанный в проектном задании установленные мощности цехов позволяют применить к расчету их нагрузок, метод коэффициента спроса. Расчетный максимум, необходимый для выбора почти всех элементов СЭС сечения проводников, трансформаторов ППЭ, отключающей аппаратуры, измерительных трансформаторов и т.д., определяемый сначала для отдельных цехов, а затем и для всего завода в целом. Определение расчетной нагрузки данным методом рассмотрим на примере сборочного цеха №3. где - расчетный максимум цеха без учета освещения. КС– коэффициент спроса цеха согласно цеха согласно [3]. кВт кВар Необходимо учесть нагрузку искусственного освещения цехов и территории завода. Эта нагрузка определяется по удельной плотности освещения согласно [1] по выражению: , где F – освещаемая площадь, м2 - удельная плотность осветительной нагрузки, Вт/м2. КСО – коэффициент спроса осветительной нагрузки согласно [3]. кВт. , где tg - коэффициент мощности осветительной нагрузки. кВар. Полная нагрузка цеха напряжением до 1 кВ представляет собой сумму силовой и осветительной нагрузки. кВт кВар Результаты расчета остальных цехов сведены в табл. 2. У потребителей напряжением 6 кВ отсутствует осветительная нагрузка. Определим мощность осветительной нагрузки территории предприятия. Площадь территории Fтер =312716,3м2 удельная плотность освещения тер = 1 Вм/м2. Коэффициент спроса КСО тер =1 по (2.1.3.) и (2.1.4.) кВт кВар Суммарная активная нагрузка напряжением до 1 кВ. кВт Суммарная реактивная нагрузка напряжением до 1 кВ. кВар Суммарная полная нагрузка напряжением до 1 кВ. кВА Для дальнейшего расчета максимальной нагрузки по заводу в целом необходимо учесть коэффициент разновременности максимума КРМ = 0,9, а также потери в цеховых трансформаторах, линиях, распределительной и др. элементах. Однако эти элементы еще не выбраны, поэтому потери в трансформаторах цеховых подстанций Р и Q учитывают приближенно по суммарным значениям нагрузок напряжением до 1 кВ цех №3 кВт кВар Расчет остальных цехов представлен в таблице 2. Суммарная активная нагрузка напряжением свыше 1000 В. кВт Потребителями напряжения 6 кВ в компрессорной, насосной являются в основном синхронные двигатели. Они имеют опережающий cos, т.е. они выдают реактивную мощность в сеть. Поэтому в расчетах учитываются со знаком «–». Реактивная мощность равна нулю так, как нагрузкой на 6 кВ в основном являются синхронные двигатели с cos=1. Активная мощность предприятия с учётом коэффициента разновримённости кВт Реактивная мощность предприятия без учета компенсации кВар. Предварительные потери активной мощности в трансформаторе ППЭ кВт Предварительные потери реактивной мощности в трансформаторе ППЭ кВар Активная мощность предприятия кВт Реактивная мощность предприятия без учета компенсации кВар. Полная расчетная мощность по заводу тогда будет кВА.
Анализ опасных и вредных производственных факторов на рабочем месте дежурного диспетчера. Условия труда на рабочих местах производственных помещений или площадок складываются под воздействием большого числа факторов, различных по своей природе, формам проявления, характеру действия на человека. В соответствии с ГОСТ 12.0.003-74 опасные и вредные производственные факторы подразделяются по своему действию на следующие группы: - физические; - химические; - биологические; - психофизиологические; Один и тот же опасный и вредный производственный фактор по природе своего действия может относиться одновременно к различным группам. Следует иметь в виду, что одни опасные факторы могут отрицательно влиять только на человека, осуществляющего технологический процесс (например электрический ток, отлетающие частицы обрабатываемого материала, вращающиеся части производственного оборудования), а другие (например шум, пыль) и на среду, окружающую рабочие места. Некоторые факторы могут оказывать отрицательное влияние на все элементы системы “человек – машина – окружающая среда – предмет труда”. Влияние на одни элементы системы может быть непосредственным (прямым), а на другие косвенным. Выбор технических средств безопасности должен осуществляться на основе выявления опасных и вредных факторов, специфических для данного технологического процесса, а также изучения особенностей каждого выявленного фактора и зоны его действия (опасной зоны). Заключение Спроектированная система электроснабжения завода тяжелого машиностроения имеет следующую структуру. Предприятие получает питание от энергосистемы по двухцепной воздушной линии электропередачи длиной 9,7 км напряжением 110 кВ. в качестве пункта приема электроэнергии используется двухтрансформаторная подстанция глубокого ввода с трансформаторами мощностью 25 000 кВА. Вся электроэнергия распределяется на напряжения 6 кВ по кабельным линиям. Распределительные пункты в системе распределения отсутствуют. В результате проделанной работы были определены следующие параметры электроснабжения. Расчетные нагрузки цехов определены по методу коэффициента спроса. В качестве расчетной нагрузки по заводу в целом приняли нагрузку, определенную методом коэффициента спроса SМ = 21755 кВА. Была построена картограмма электрических нагрузок, по которой было определено место расположения пункта приема электроэнергии. ПГВ был пристроен к цеху №6. На основании технико-экономического расчета было выбрано устройство высокого напряжения типа «выключатель». Были выбраны силовые трансформаторы типа ТРДН-25 000/110. Питающие линии марки АС-70, которые прокладываются на железобетонных опорах. Было выбрано рациональное напряжение распределения электроэнергии 6 кВ. На территории завода расположены 15 КТП с расстановкой БСК. Питание цехов осуществляется кабельными линиями. Расположенными в земле. Для выбора элементов схемы электроснабжения был проведен расчет токов короткого замыкания в трех точках. На основании этих данных были выбраны аппараты на сторонах 110 кВ, 6 кВ, 0,4 кВ, а также проведена проверка КЛЭП на термическую стойкость. Был произведен расчет самозапуска двигателей 6 кВ. был произведен расчет продольной дифференциальной токовой защиты трансформаторов ПГВ. Был рассмотрен расчет молниезащиты и заземляющего устройства ПГВ. В целом предложенная схема электроснабжения отвечает требованиям безопасности, надежности, экономичности. Список использованных источников
Правила устройства электроустановок, Минэнерго, Москва, Энергоатомиздат, 1986 – 1 2 |