Главная страница
Навигация по странице:

  • 0,74—2,40; 3,40—4,20; 8,0—13,0; 30,0—80,0.

  • Задание 2. Применение ДЗЗ в различных отраслях Сельское хозяйство

  • Мониторинг лесного покрова

  • Мониторинг поверхности

  • Геодезия

  • Список литературы

  • отчет. Задание Методы зондирования


    Скачать 142 Kb.
    НазваниеЗадание Методы зондирования
    Анкоротчет
    Дата14.03.2023
    Размер142 Kb.
    Формат файлаdoc
    Имя файлаOTChET_DZ_1.doc
    ТипДокументы
    #986914

    Содержание

    Задание1………………………………………………………………………3

    Задание2………………………………………………………………………8

    Задание3……………………………………………………………………10

    Заключение………………………………………………………………….12

    Список литературы…………………………………………………………15

    Задание 1. Методы зондирования

    1)Фотосъемки

    Фотографические снимки поверхности Земли получают с пилотируемых кораблей и орбитальных станций или с автоматических спутников. Отличительной чертой КС является высокая степень обзорности, охват одним снимком больших площадей поверхности. В зависимости от типа применяемой аппаратуры и фотопленок, фотографирование может производиться во всем видимом диапазоне электромагнитного спектра, в отдельных его зонах, а также в ближнем ИК (инфракрасном) диапазоне.

    Масштабы съемки зависят от двух важнейших параметров: высоты съемки и фокусного расстояния объектива. Космические фотоаппараты в зависимости от наклона оптической оси позволяют получать плановые и перспективные снимки земной поверхности.

    В настоящее время используется фотоаппаратура с высоким разрешением, позволяющая получать КС с перекрытием 60% и более. Спектральный диапазон фотографирования охватывает видимую часть ближней инфракрасной зоны (до 0,86 мкм).

    Известные недостатки фотографического метода связаны с необходимостью возвращения пленки на Землю и ограниченным ее запасом на борту. Однако фотографическая съемка — в настоящее время самый информативный вид съемки из космического пространства. Оптимальный размер отпечатка 18х18 см, который, как показывает опыт, согласуется с физиологией человеческого зрения, позволяя видеть все изображение одновременно.

    Для удобства пользования из отдельных КС, имеющих перекрытия, монтируются фотосхемы (фотомозаики) или фотокарты с топографической привязкой опорных точек с точностью 0,1 мм и точнее. Для монтажа фотосхем используются только плановые КС.

    Для приведения разномасштабного, обычно перспективного КС к плановому используется специальный процесс, называемый трансформированием. Трансформированные КС с успехом используются для составления космофотосхем и космофотокарт и обычно легко привязываются к географической сетке координат.

    2) Сканерные съемки

     

    В настоящее время для съемок из космоса наиболее часто используются многоспектральные оптико-механические системы — сканеры, установленные на ИСЗ различного назначения. При помощи сканеров формируются изображения, состоящие из множества отдельных, последовательно получаемых элементов. Термин «сканирование» обозначает развертку изображения при помощи сканирующего элемента (качающегося или вращающегося зеркала), поэлементно просматривающего местность поперек движения носителя и посылающего лучистый поток в объектив и далее на точечный датчик, преобразующий световой сигнал в электрический. Этот электрический сигнал поступает на приемные станции по каналам связи. Изображение местности получают непрерывно на ленте, составленной из полос — сканов, сложенных отдельными элементами — пикселами. Сканерные изображения можно получить во всех спектральных диапазонах, но особенно эффективным является видимый и ИК-диапазоны. При съемке земной поверхности с помощью сканирующих систем формируется изображение, каждому элементу которого соответствует яркость излучения участка, находящегося в пределах мгновенного поля зрения. Сканерное изображение — упорядоченный пакет яркостных данных, переданных по радиоканалам на Землю, которые фиксируются на магнитную ленту (в цифровом виде) и затем могут быть преобразованы в кадровую форму.

     

     



     

    Различные методы сканирования поверхности Земли

    Важнейшей характеристикой сканера являются угол сканирования (обзора) и мгновенный угол зрения, от величины которого зависят ширина снимаемой полосы и разрешение. В зависимости от величины этих углов сканеры делят на точные и обзорные. У точных сканеров угол сканирования уменьшают до ±5°, а у обзорных увеличивают до ±50°. Величина разрешения при этом обратно пропорциональна ширине снимаемой полосы.

    Хорошо зарекомендовал себя сканер нового поколения, названный «тематическим картографом», которым были оснащены американские ИСЗ Landsat 5 и Landsat 7. Сканер типа «тематический картограф» работает в семи диапазонах с разрешением 30 м в видимом диапазоне спектра и 120 м в ИК-диапазоне. Этот сканер дает большой поток информации, обработка которой требует большего времени; в связи с чем замедляется скорость передачи изображения (число пикселов на снимках достигает более 36 млн. на каждом из каналов). Сканирующие устройства могут быть использованы не только для получения изображений Земли, но и для измерения радиации — сканирующие радиометры, и излучения — сканирующие спектрометры.

     

    3)Радарные съемки

    Радиолокационная (РЛ) или радарная съемка — важнейший вид дистанционных исследований. Используется в условиях, когда непосредственное наблюдение поверхности планет затруднено различными природными условиями: плотной облачностью, туманом и т.п. Она может проводиться в темное время суток, поскольку является активной.

     

     



     

    Особенности оптической и радарной съёмки

    Для радарной съемки обычно используются радиолокаторы бокового обзора (ЛБО), установленные на самолетах и ИСЗ. С помощью ЛБО радиолокационная съемка осуществляется в радиодиапазоне электромагнитного спектра. Сущность съемки заключается в посылке радиосигнала, отражающегося по нормали от изучаемого объекта и фиксируемого на приемнике, установленном на борту носителя. Радиосигнал вырабатывается специальным генератором. Время возвращения его в приемник зависит от расстояния до изучаемого объекта. Этот принцип работы радиолокатора, фиксирующего различное время прохождения зондирующего импульса до объекта и обратно, используется для получения РЛ-снимков. Изображение формируется бегущим по строке световым пятном. Чем дальше объект, тем больше времени надо на прохождение отражаемого сигнала до его фиксации электронно-лучевой трубкой, совмещенной со специальной кинокамерой.

    При дешифрировании радарных снимков следует учитывать тон изображения и его текстуру. Тоновые неоднородности РЛ-снимка зависят от литологических особенностей пород, размера их зернистости, устойчивости процессам выветривания. Тоновые неоднородности могут варьировать от черного до светлого цвета. Опыт работы с РЛ-снимками показал, что черный тон соответствует гладким поверхностям, где, как правило, происходит почти полное отражение посланного радиосигнала. Крупные реки всегда имеют черный тон. Текстурные неоднородности РЛ-изображения зависят от степени расчлененности рельефа и могут быть тонкосетчатыми, полосчатыми, массивными и др. Полосчатая текстура РЛ-изображения, например, характерна для горных районов, сложенных часто чередующимися слоями осадочных или метаморфических пород, массивная — для районов развития интрузивных образований. Особенно хорошо получается на РЛ-снимках гидросеть. Она дешифрируется лучше, чем на фотоснимках. Высокое разрешение РЛ-съемки в районах, покрытых густой растительностью, открывает широкие перспективы ее использования.

    Радарные системы бокового обзора с конца 70-х годов стали устанавливать на ИСЗ. Так, например, первый радиолокатор был установлен на американском спутнике "Сисат", предназначенном для изучения динамики океанических процессов. Позднее был сконструирован радар, испытанный во время полетов космического корабля "Шаттл". Информация, полученная с помощью этого радара, представляется в виде черно-белых и ложноцветных синтезированных фото-, телеизображений или записей на магнитную ленту. Разрешающая способность 40 м. Информация поддается числовой и аналоговой обработке, такой же, что и сканерные снимки системы Landsat. Это в значительной мере способствует получению высоких результатов дешифрирования. Во многих случаях РЛ-снимки оказываются геологически более информативными, чем снимки спутников Landsat или других оптических сенсоров. Наилучший результат достигается и при комплексном дешифрировании материалов того и другого видов. РЛ-снимки успешно используются для изучения трудно- или недоступных территорий Земли — пустынь и областей, расположенных в высоких широтах, а также поверхность других планет.

    Классичесими уже стали результаты картирования поверхности Венеры — планеты, покрытой мощным облачным слоем. Совершенствование РЛ-аппаратуры должно повлечь за собой дальнейшее повышение роли радиолокации в дистанционных исследованиях Земли, особенно при изучении ее геологического строения.

     

    4)Тепловые съемки

    Инфракрасная (ИК), или тепловая, съемка основана на выявлении тепловых аномалий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением. Она широко применяется в геологии. Температурные неоднородности поверхности Земли возникают в результате неодинакового нагрева различных ее участков. Инфракрасный диапазон спектра электромагнитных колебаний условно делится на три части (в мкм):

    ближний (0,74—1,35)

    средний (1,35—3,50)

    дальний (3,50—1000)

    Солнечное (внешнее) и эндогенное (внутреннее) тепло нагревает геологические объекты по-разному в зависимости от литологических свойств пород, тепловой инерции, влажности, альбедо и многих других причин.

    ИК-излучение, проходя через атмосферу, избирательно поглощается, в связи с чем тепловую съемку можно вести только в зоне расположения так называемых "окон прозрачности" — местах пропускания ИК-лучей. Опытным путем выделено четыре основных окна прозрачности (в мкм): 0,74—2,40; 3,40—4,20; 8,0—13,0; 30,0—80,0. Некоторые исследователи выделяют большее число окон прозрачности. в первом окне (до 0,84 мкм) используется отраженное солнечное излучение. Здесь можно применять специальные фотопленки и работать с красным фильтром. Съемка в этом диапазоне называется ИК-фотосъемкой.

    В других окнах прозрачности работают измерительные приборы — тепловизоры, преобразующие невидимое ИК-излучение в видимое с помощью электроннолучевых трубок, фиксируя тепловые аномалии. На ИК-изображениях светлыми тонами фиксируются участки с низкими температурами, темными — с относительно более высокими. Яркость тона прямо пропорциональна интенсивности тепловой аномалии. ИК-съемку можно проводить в ночное время. На ИК-снимках, полученных с ИСЗ, четко вырисовывается береговая линия, гидрографическая сеть, ледовая обстановка, тепловые неоднородности водной среды, вулканическая деятельность и т.п. ИК-снимки используются для составления тепловых карт Земли. Линейно-полосовые тепловые аномалии, выявляемые при ИК-съемке, интерпретируются как зоны разломов, а площадные и концентрические — как тектонические или орографические структуры. Например, наложенные впадины Средней Азии, выполненные рыхлыми кайнозойскими отложениями, на ИК-снимках дешифрируются как площадные аномалии повышенной интенсивности. Особенно ценна информация, полученная в районах активной вулканической деятельности.

    В настоящее время накоплен опыт использования ИК-съемки для изучения дна шельфа. Этим методом по разнице температурных аномалий поверхности воды получены данные о строении рельефа дна. При этом использован принцип, согласно которому при одинаковом облучении поверхности воды на более глубоких участках водных масс энергии на нагревание расходуется больше, чем на более мелких. В результате температура поверхности воды над более глубокими участками будет ниже, чем над мелкими. Этот принцип позволяет на ИК-изображениях выделять положительные и отрицательные формы рельефа, подводные долины, банки, гряды и т.п. ИК-съемка в настоящее время применяется для решения специальных задач, особенно при экологических исследованиях, поисках подземных вод и в инженерной геологии.

    Задание 2. Применение ДЗЗ в различных отраслях

    Сельское хозяйство

    При помощи спутников можно с определенной цикличностью получать изображения отдельных полей, регионов и округов. Пользователи могут получать ценную информацию о состоянии угодий, в том числе идентификацию культур, определение посевных площадей сельскохозяйственных культур и состояние урожая. Спутниковые данные используются для точного управления и мониторинга результатов ведения сельского хозяйства на различных уровнях. Эти данные могут быть использованы для оптимизации фермерского хозяйства и пространственно-ориентированного управления техническими операциями. Изображения могут помочь определить местоположение урожая и степень истощения земель, а затем могут быть использованы для разработки и реализации плана лечения, для локальной оптимизации использования сельскохозяйственных химикатов. Основными сельскохозяйственными приложениями дистанционного зондирования являются следующие:

    · растительность:

    o классификация типа культур

    o оценка состояния посевов (мониторинг сельскохозяйственных культур, оценка ущерба)

    o оценка урожайности

    · почва

    o отображение характеристик почвы

    o отображение типа почвы

    o эрозия почвы

    o влажность почвы

    o отображение практики обработки почвы

    Мониторинг лесного покрова

    Дистанционное зондирование также применяется для мониторинга лесного покрова и идентификации видов. Полученные таким способом карты могут покрывать большую площадь, одновременно отображая детальные измерения и характеристики территории (тип деревьев, высота, плотность). Используя данные дистанционного зондирования, возможно определить и разграничить различные типы леса, что было бы трудно достичь, используя традиционные методы на поверхности земли. Данные доступны в различных масштабах и разрешениях, что вполне соответствует локальным или региональные требованиям. Требования к детальности отображения местности зависит от масштаба исследования. Для отображения изменений в лесном покрове (текстуры, плотности листьев) применяются:

    · мультиспектральные изображения: для точной идентификации видов необходимы данные с очень высоким разрешением

    · многоразовые снимки одной территории, используются для получения информации о сезонных изменений различных видов

    · стереофотографии - для разграничение видов, оценки плотности и высоты деревьев. Стереофотографии предоставляют уникальный вид на лесной покров, доступный только через технологии дистанционного зондирования

    · Радары широко применяются в зоне влажных тропиков, благодаря их свойству получать изображения при любых погодных условиях

    · Лидары позволяют получать 3-мерную структуру леса, обнаруживать изменения высоты поверхности земли и объектов на ней. Данные Лидара помогают оценить высоту деревьев, области корон и количество деревьев на единице площади.

    Мониторинг поверхности

    Мониторинг поверхности является одним из наиболее важных и типичных применений дистанционного зондирования. Полученные данные используются при определении физического состояния поверхности земли, например, леса, пастбища, дорожного покрытия и т.д., в том числе результатов деятельности человека, такие, как ландшафт в промышленных и жилых зонах, состояния сельскохозяйственных территорий и т.п. Первоначально должна быть установлена система классификации земельного покрова, которая обычно включает в себя уровни и классы земель. Уровни и классы должны быть разработаны с учётом цели использования (на национальном, региональном или местном уровне), пространственного и спектрального разрешения данных дистанционного зондирования, запросу пользователя и так далее.

    Обнаружение изменения состояния поверхности земли необходимо для обновления карт растительного покрова и рационализации использования природных ресурсов. Изменения, как правило, обнаруживаются при сравнении нескольких изображений, содержащих несколько уровней данных, а также, в некоторых случаях, при сравнении старых карт и обновленных изображений дистанционного зондирования.

    · сезонные изменения: сельскохозяйственные угодья и лиственные леса изменяются по-сезонно

    · годовые изменения: изменения поверхности земли или территории землепользования, например, районы вырубки леса или разрастания городов

    Информация о поверхности земли и изменения характера растительного покрова прямо необходимы для определения и реализации политики защиты окружающей среды и могут быть использованы совместно с другими данными для проведения сложных расчетов (например, определения рисков эрозии).

    Геодезия

    Сбор геодезических данных с воздуха впервые был использован для обнаружения подводных лодок и получения гравитационных данных, используемых для построения военных карт. Эти данные являют собой уровни мгновенных возмущений гравитационного поля Земли, которые могут быть использованы для определения изменений в распределении масс Земли, что в свою очередь может быть востребовано для проведения различных геологических исследований

    Задание3. Обзор спутников ДЗЗ

    В настоящее время существует необходимость оперативного мониторинга состояния нашей планеты. Для решения многих проблем применяется дистанционное зондирование Земли, то есть получение снимков с помощью космических и авиационных средств, оснащенных различными видами аппаратуры. Космические снимки используются в различных отраслях — сельском хозяйстве, геологических и гидрологических исследованиях, лесоводстве, охране окружающей среды, планировке территорий, образовательных, разведывательных и военных целях. Первая фотография Земли из космоса была получена в 1946. За прошедшее время накоплено огромное количество снимков Земной поверхности. В настоящее время в сети Интернет имеется большой объем информации по космическим съемкам Земли. Прежде всего, это каталоги, позволяющие бесплатно получить информацию о наличии снимков определенного типа на данную территорию, оценить качество по данным в каталоге и уменьшенному просмотровому изображению. Во всем мире широко используются данные NOAA, Landsat, SPOT, IRS, RADARSAT, ERS и другие. Рассмотрим основные характеристики некоторых спутников. Геостационарный спутник: глобальный охват, высокое временное, но очень низкое пространственное разрешение. GOES (Geostationary Operational Environmental Satellite) - съемочный инструмент имеет пять спектральных диапазонов, в основном используемых для метеорологических задач, пространственное разрешение 1 км в видимом и 4 км в тепловых диапазонах. Данные GOES архивируются на Интернете во множестве каталогов. Обновление данных происходит каждые 15 минут, что необходимо для прослеживания динамичных атмосферных процессов. http://www.goes.noaa.gov - здесь публикуются данные, получаемые американскими спутниками GOES на атлантический, сухопутный американский и тихоокеанский сектора. Спутники NOAA (National Oceanic and Atmospheric Administration, США) оборудованы сканером AVHRR (Advanced Very High Resolution Radiometer). AVHRR обеспечивает глобальный сбор данных по всем каналам, полоса съемки имеет ширину 2400 км, спутник облетает Землю 14 раз в сутки. Основной источник необработанных данных AVHRR - интерактивный спутниковый архив NOAA - http://www.saa.noaa.gov. Помимо этого, данные AVHRR архивируются и распространяются региональными станциями приема, например, на территории России действует сеть региональных станций приема. Данные AVHRR используются для определения температуры суши, температуры поверхности моря, выявления пожаров, измерения вегетационного индекса, наблюдения облачного, снежного и ледового покровов. Спутники SeaStar и Terra на полярных орбитах (сканеры SeaWIFS, MODIS, MISR): среднее и низкое пространственное разрешение, средний охват, высокое спектральное разрешение, распространяются бесплатно. Спутник SeaStar, данные можно получать бесплатно (для исследовательских и образовательных целей) с задержкой около двух недель с момента съемки, став авторизованным пользователем NASA (что бесплатно и требует только посылки краткого научного проекта). Информация о спутнике и архиве находится по адресу: http://seawifs.gsfc.nasa.gov/SEAWIFS/BACKGROUND/. Сканер MODIS (американский спутник Terra) имеет пространственное разрешение от 250 до 1000 м в 36 спектральных каналах и его данные бесплатны. Фактически MODIS является следующим поколением сканеров AVHRR, усовершенствованным по всем направлениям. Образцы снимков: http://www.scanex.ru/rus/gallery/gallery.htm. SPOT: небольшой охват, высокое пространственное разрешение, высокая стоимость. Работа с просмотровыми изображениями. Французские спутники и съемочные системы SPOT (Systeme Pour l'Observation de la Terre) начали работать в 1986 г. Многоэлементные сканирующие устройства SPOT HRV работают в многозональном и панхроматическом режимах. Каталог DALI с возможностью гостевого доступа находится по адресу: http://www.spotimage.fr/home/proser/whatdali/daligst/welcome.htm. Сами по себе данные SPOT очень дороги, однако для обобщенных исследований можно использовать бесплатные просмотровые изображения\, их разрешение составляет первые сотни метров. Для СПОТ 1 - 3 эти изображения содержат все исходные зоны. Приведенная таблица показывает характеристики просмотровых изображений для SPOT и Landsat TM в двух широко известных Интернет-каталогах: Параметр ы просмотро вых изображен ий Интернет каталоги Spotimage http://www.spotimage.fr/ho me/proser/whatdali/daligst/w elcome.htm EROS Data Center http://edcwww.cr.usgs.gov/webgl is SPOT HRV SPOT Pan Landsat MSS Landsat TM Размер сцены в пикселах 500х500 404х400 500х500 382х336 Спектраль ные зоны (номера) 1,2,3 1 1,2,4 3,4,5 Разрешени е м 120х120 120х120 458х425 484х506 Для отдельных задач использование таких просмотровых изображений является достаточным. Можно отметить, что цена самих снимков прежде всего определяется пространственным разрешением. Программа Landsat — наиболее продолжительный проект по получению спутниковых фотоснимков планеты Земля. Первый из спутников в рамках программы был запущен в 1972. Оборудование, установленное на спутниках Landsat сделало миллиарды снимков. LandSat 7 — последний из спутников дистанционного зондирования Земли, запущенный в 1999 году в рамках программы Landsat. Основной целью спутника было обновление глобального архива спутниковых фотографий. Хотя программа LandSat управлялась NASA, данные съемок обрабатываются и распространяются Геологической службой США. Программа NASA World Wind использует изображения, полученные, в частности, с Landsat 7. Миссия Landsat 7 рассчитана на длительность до 5 лет и могла снимать и передавать до 532 изображений в сутки. Спутник находится на полярной, гелиосинхронной орбите, и пролетает над всей поверхностью планеты. При высоте 705 км на полное сканирование поверхности уходит 232 оборота, или 16 суток. Основным инструментом ДЗЗ является Enhanced Thematic Mapper Plus (ETM+). В 2003 году вышел из строя прибор Scan Line Corrector (SLC) в инструменте ETM+. Назначение прибора — компенсация продольного движения спутника, таким образом, что итоговые полосы сканирования расположены параллельно друг другу (и перпендикулярно направлению движения спутника). Без компенсации от SLC, получаемые изображения имеют вид «зигзага», когда некоторые участки поверхности снимаются дважды, а некоторые вообще не снимаются. Спутник поставляет примерно на четверть меньше данных без такой коррекции. Landsat 7 продолжил собирать данные в подобном режиме. Был создан программный пакет, позволяющий пользователю заполнять неотснятые участки изображения данными с других витков Landsat 7. NASA заключило контракт с EarthSat на производство глобальной мозаики Landsat GeoCover (Geocover 2000 в программе NASA World Wind). Данная мозаика доступна для бесплатной загрузки в формате MrSID и стала первой глобальной свободно доступной мозаикой. Большие части поверхности земли, показанные на онлайн-сервисах Google Maps, Google Earth, Bing Maps и Yahoo! Maps, основаны на улучшенных и измененных по цветам снимкaх Landsat 7.

    Заключение

    Данные спутниковой съемки содержат полезную информацию, полученную в различных спектральных диапазонах, и сохраняются в цифровом виде. Поскольку космические снимки охватывают большие области, их можно использовать для тематических региональных исследований и идентификации крупных пространственных объектов, в частности, структур рельефа. Регулярная съемка территорий позволяет проводить мониторинг водных ресурсов, агротехнического состояния сельскохозяйственных культур, эродированности почв, развития инфраструктуры городов и других процессов, объектов и явлений, которые изменяются под воздействием природных и антропогенных факторов. С помощью космической съемки достаточно просто получить данные о труднодоступных областях. Еще одним преимуществом ДЗЗ является возможность получения снимков разного разрешения, что позволяет применять данные дистанционного зондирования для решения различных задач в разных предметных областях. Поскольку анализ материалов ДЗЗ выполняется камерально, требуется меньше полевых исследований, что окупает затраты на приобретение данных. Экономически эффективным является и применение космических снимков для оперативного обновления средне- и мелкомасштабных карт. Цифровой формат материалов ДЗЗ и использование компьютеров для их обработки и анализа обеспечивают быстрое получение результатов.

    Исторически один из наиболее развитых способов получения информации об объектах земной поверхности – это сбор информации в поле. Сплошное изучение значительных по площади территорий методами наземной съемки (тахеометрия, нивелирование и т.д.) требует огромных экономических и временных затрат. Необходимо заметить, что при наземных исследованиях трудно добиться синхронности, одновременности наблюдений на всех участках. Ко всему этому зачастую добавляется такой фактор как труднодоступность территории.

    Этих недостатков лишены методы ДЗЗ. Одна из наиболее важных характеристик этих методов – возможность накапливать данные о большой области земной поверхности за короткий промежуток времени, получая практически моментальный снимок. Например, с помощью сканера на геостационарном метеорологическом спутнике Меteosat изображение примерно четверти поверхности Земли формируется менее чем за полчаса. Если этот аспект рассматривать в сочетании с тем фактом, что с помощью спутниковых систем можно получать данные в ситуациях, сложных для наземных исследований, когда они медленны, дороги, опасны, политически неудобны, то потенциальная мощь ДЗЗ становится еще более очевидной. Дополнительным преимуществом ДЗЗ является возможность систем выдавать калиброванные данные в цифровом виде, которые могут быть введены прямо в компьютер для обработки.

    В современных условиях следующие характеристики определяют востребованность космических снимков (КС):

    Объективность – каждый КС является документом, объективно отражающим состояние местности на момент съемки. Подделать КС практически невозможно, так как съемку ведут различные компании-операторы и попытки изменения данных могут быть легко обнаружены.

    Актуальность – материалы космической съемки можно получить на различные даты, включая съемку на заказ, которая осуществляется, как правило, в течение нескольких недель.

    Масштабность – современные приборы ДЗЗ позволяют одновременно снять значительные по площади территории с довольно высокой степенью детализации.

    Экстерриториальность – участки съемки никак не привязаны к государственным и территориальным границам и для проведения съемки не требуется разрешение.

    Доступность – в настоящее время данные ДЗЗ с пространственным разрешением 2 м и меньше являются открытыми и доступными. Процедура заказа и получения снимков достаточна проста.

    Данные ДЗЗ, особенно полученные с космических спутников, зачастую нельзя получить никаким другим способом. Современная служба погоды в значительной мере основана на наблюдениях со спутников.

    Помимо преимуществ у данных дистанционного зондирования есть и недостатки: для их обработки и анализа требуются очень высокая квалификация и большой практический опыт. Использование таких данных становится экономически неэффективным при единичных исследованиях небольших территорий. Программное обеспечение, которое применяется для обработки цифровых снимков, также имеет высокую стоимость. Кроме того, если результаты дешифрирования материалов ДЗЗ не подтверждены полевыми исследованиями, к ним надо относиться с большой осторожностью.

    Список литературы

    1)ОБЗОР СПУТНИКОВ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ПОВЕРХНОСТИ ЗЕМЛИ Сургутская Н.С. Научный руководитель – к.т.н., профессор Маглинец Ю.А. Сибирский федеральный университет

    2) Санкт-Петербургский политехнический университет Петра Великого (бывш. СПбГПУ) Использование современного оборудования для решения геодезических задач

    3) https://lektsii.com/1-58988.html




    написать администратору сайта