Главная страница
Навигация по странице:

  • 2.4. Вентиляция производственных помещений

  • Приточная вентиляция

  • Вытяжная и приточно-вытяжная вентиляция

  • Местная вентиляция

  • Методы расчета систем искусственной вентиляции

  • Кондиционирование воздуха

  • Определение выделений тепла. Расчет воздухообмена при проектировании общеобменной вентиляции и кондиционирования воздуха.

  • 2.5. Организация производственного освещения

  • Раздел 2. Основы физиологии, гигиены труда. Закон Украины Об обеспечении санитарного и эпидемиологического благополучия населения


    Скачать 446.5 Kb.
    НазваниеЗакон Украины Об обеспечении санитарного и эпидемиологического благополучия населения
    АнкорРаздел 2. Основы физиологии, гигиены труда.doc
    Дата17.08.2018
    Размер446.5 Kb.
    Формат файлаdoc
    Имя файлаРаздел 2. Основы физиологии, гигиены труда.doc
    ТипЗакон
    #23122
    страница2 из 4
    1   2   3   4


    Для контроля концентрации вредных веществ в воздухе производственных помещений и рабочих зон используют следующие методы:

    • экспресс-метод, в основе которого лежит явление колориметрии (изменение цвета индикаторного порошка в результате воздействия соответствующего вредного вещества). Этот метод позволяет быстро и с достаточной точностью определить концентрацию вредного вещества непосредсредственно в рабочей зоне. Для этого используют газоанализаторы типа УГ-1, УГ-2, ГХ-4.

    • лабораторный метод, сущность которого состоит в отборе проб воздуха в рабочей зоне и проведении физико-химического анализа (хроматографического, фотоколориметрического и др.) в лабораторных условиях. Этот метод позволяет получить точные результаты, однако требует значительного времени.

    • метод непрерывной автоматической регистрации содержания в воздухе вредных химических веществ с использованием газосигнализаторов (ФКГ-ЗМ для хлора, «Сирена-2 для аммиака, «Фотон» для сероводорода и т.д.)

    Запыленность воздуха можно определить весовым, электрическим, фотоэлектрическим и другими методами. Чаще всего используют весовой метод. Для этого взвешивают специальный фильтр до и после протягивания через него определенного объема запыленного воздуха, а потом вычисляют вес пыли в миллиграммах на кубический метр воздуха.

    Периодичность контроля состояния воздушной среды (согласно ГОСТ 12.1.005-88) определяется классом опасности вредных веществ, их количеством, степенью опасности поражения работающих. Контроль (измерение) может проводиться непрерывно или периодически (на протяжении смены, ежедневно, ежемесячно). Непрерывно контроль с сигнализацией превышения ПДК должен быть обеспечен, если в воздух производственных помещений могут попасть вредные вещества остронаправленного воздействия.

    Следует отметить, что в этих источниках кроме ПДК, наряду с величиной норматива, указывается агрегатное состояние вещества (пары, аэрозоль, пыль и т.д.), в котором оно представляет опасность, а также особенности воздействия этого вещества на организм человека (остронаправленное, аллергическое, канцерогенное, фиброгенное или другое воздействие).

    К вредным веществам однонаправленного воздействия относятся вещества, которые близки по химическому составу и характеру воздействия на организм человека.

    При одновременном содержании в воздухе нескольких вредных веществ, которые не имеют однонаправленного воздействия, ПДК остается таким же, как и при изолированном воздействии.
    2.3.3. ОСНОВНЫЕ МЕРОПРИЯТИЯ ПО НОРМАЛИЗАЦИИ ВОЗДУШНОЙ СРЕДЫ
    1. механизация и автоматизация, дистанционное управление (дает возможность вывести рабочих из среды, загрязненной вредными веществами, и исключает непосредственный контакт рабочих с вредными веществами и материалами);

    2. усовершенствование технологических процессов и оборудования (применение замкнутых технологических циклов, непрерывных технологических процессов, мокрых способов переработки пылящих материалов и т.п.);

    3. изъятие вредных веществ из технологических процессов, замена вредных веществ менее вредными и т.п.(например, применение электрического нагрева металла взамен применения угольного нагрева или мазута, замена расплава свинца на расплавы солей, замена свинцовых белил на цинковые, метиловый спирт – другими спиртами, органические растворители для обезжиривания – моющими растворами на основе воды и т.д.);

    4. подавление выделения вредных веществ в местах их возникновения (это применение поверхностно-активных веществ, орошение пылящих материалов распыленной водой, применение высокократной пены и др.);

    5. герметизация оборудования (применение соответствующих уплотнений для соединительных элементов периодический их осмотр, применение крышек для ванн, локализация вредных выделений за счет местной вентиляции, применение аспирационных установок и т.п.);

    6. вентиляция и очистка воздуха от вредных веществ;

    7. контроль содержания вредных веществ в воздухе рабочей зоны;

    8. применение индивидуальных средств защиты (респираторов, противогазов и др.).

    Средства индивидуальной защиты органов дыхания (СИЗОД) применяются в том случае, если другими способами не удалось достичь санитарных норм или возникла аварийная ситуация. Все СИЗОД делятся на: фильтрующие (обеспечивающие защиту при содержании кислорода не менее 18% и при ограниченном содержании вредных веществ) и изолирующие, в которых нет этих ограничений. Простейшими являются противопылевые противоаэрозольные респираторы (клапанные и бесклапанные). Клапанные респираторы бывают противопылевыми и универсальными, в которых используют фильтрующие патроны с поглощением вредных паров и газов, пыли, дыма и тумана (например, типа РУ60М).
    2.4. Вентиляция производственных помещений
    2.4.1. НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ СИСТЕМ ВЕНТИЛЯЦИИ
    Для поддержания требуемых параметров чистоты воздуха и параметров микроклимата производственного помещения применяют вентиляцию. Вентиляция – это организованный воздухообмен, заключающийся в удалении из рабочего помещения загрязненного воздуха и подаче вместо него чистого воздуха. В зависимости от способа перемещения воздуха вентиляция может быть естественной или искусственной.
    2.4.2. ЕСТЕСТВЕННАЯ ВЕНТИЛЯЦИЯ
    Естественная вентиляция осуществляется за счет разности температур воздуха в помещении и наружного воздуха (тепловой напор) или действия ветра (ветровой напор). Естественная вентиляция может быть неорганизованной и организованной. При неорганизованной вентиляции неизвестны объемы воздуха, которые поступают и удаляются из помещения. Воздухообмен зависит от направления и силы ветра, температуры наружного и внутреннего воздуха. Организованная естественная вентиляция называется аэрацией. Для аэрации в стенах здания делают отверстия для поступления наружного воздуха, а в верхней части здания устанавливают специальные устройства (фонари) для удаления отработанного воздуха. Для обеспечения нужного воздухообмена необходимо рассчитать площади приточных и вытяжных аэрационных отверстий. Преимущества – простота, отсутствие затрат, возможность обеспечения высокой краткости воздухообмена. Недостатки – нестабильность воздухообмена, невозможность производить очистки выбрасываемого воздуха.
    2.4.3. ИСКУССТВЕННАЯ ВЕНТИЛЯЦИЯ
    Искусственная (механическая) вентиляция в отличии от естественной, предоставляет возможность очищать воздух перед его выбросом в атмосферу, улавливать вредные вещества непосредственно около мест их образования, обрабатывать приточный воздух (очищать, подогревать, увлажнять) более целенаправленно подавать воздух в рабочую зону.

    Общеобменная искусственная вентиляция обеспечивает создание необходимого микроклимата и чистоту воздушной среды во всем объеме рабочей зоны помещения. Она применяется для удаления избыточного тепла при отсутствии значительных токсических выделений, а также в случаях, когда характер технологического процесса и особенности производственного оборудования исключают возможность использования местной вытяжной вентиляции. Различают четыре основные схемы организации воздухообмена при общеобменной вентиляции: сверху вниз, сверху вверх, снизу вверх, снизу вниз.



    Рис. 2.4.1. Схема организации воздухообмена при общеобменной вентиляции
    Схемы сверху вниз и сверху вверх целесообразно применять в случае, если приточный воздух в холодный период имеет температуру ниже температуры воздуха в помещении. Приточный воздух, прежде чем достичь рабочей зоны, нагревается за счет воздуха помещения. Другие две схемы рекомендуется использовать тогда, когда приточный воздух в холодный период подогревается и его температура выше температуры внутреннего воздуха.

    Если в производственных помещениях выделяются газы с плотностью, превышающей плотность воздуха, то общеобменная вентиляция должна обеспечивать удаление 60% воздуха из нижней зоны помещения и 40% — из верхней. Если плотность газов меньше плотности воздуха, то удаление загрязненного воздуха осуществляется в верхней зоне.

    Общеобменная приточно-вытяжная вентиляция состоит из двух установок: для подачи чистого воздуха и отвода загрязненного. Отношение этих двух потоков называют вентиляционным воздушным балансом. Этот баланс может быть уравновешенным (если приток равен вытяжке), положительным (если преобладает приток) и отрицательным (если преобладает вытяжка).

    Приточная вентиляция. Схема приточной механической вентиляции (рис 2.4.2) включает воздухозаборное устройство 1; фильтр для очистки воздуха 2; воздухонагреватель (калорифер) 3; вентилятор 5, сеть воздуховодов 4 и приточные патрубки с насадками 6. Если нет необходимости в подогреве приточного воздуха, то его пропускают непосредственно в производственные помещения по обводному каналу 7.

    Воздухозаборные устройства необходимо располагать в местах, где воздух не загрязнен пылью и газами. Они должны находиться не ниже 2 м от уровня земли, а от выбросных шахт вытяжной вентиляции: по вертикали — ниже 6 м и по горизонтали — не ближе 2,5 м.

    Приточный воздух направляется в помещение, как правило, рассеянным потоком для чего используются специальные насадки.



    Рис. 2.4.2. Схема приточной вентиляции
    Вытяжная и приточно-вытяжная вентиляция. Вытяжная вентиляция (рис. 2.4.3.) состоит из очистительного устройства 1, вентилятора 2, центрального 3 и отсасывающих воздуховодов 4.



    Рис 2.4.3. Схема вытяжной вентиляции
    Воздух после очистки необходимо выбрасывать на высоте не меньше чем 1 м над коньком крыши. Запрещается делать выбросные отверстия непосредственно в окнах.

    В условиях промышленного производства наиболее распространена приточно-вытяжная система вентиляции с общим притоком в рабочую зону и местной вытяжкой вредных веществ непосредственно от мест их образования.

    В производственных помещениях, где выделяется значительное количество вредных газов, паров, пыли вытяжка должна быть на 10% большей, чем приток, чтобы вредные вещества не вытеснялись в смежные помещения с меньшей токсичностью.

    В системе приточно-вытяжной вентиляции возможно использование не только наружного воздуха, но и воздуха самих помещений после его очистки. Такое повторное использование воздуха помещений называется рециркуляцией и осуществляется в холодный период года для экономии тепла, необходимого для подогрева приточного воздуха. Однако возможность рециркуляции оговаривается целым рядом санитарно-гигиенических и противопожарных требований.
    Местная вентиляция
    Местная вентиляция может быть приточной и вытяжной.

    Местная приточная вентиляция, при которой осуществляется концентрированная подача приточного воздуха заданных параметров (температуры, влажности, скорости движения), выполняется в виде воздушных душей, воздушных и воздушно-тепловых завес.

    Воздушные души используются для предотвращения перегрева рабочих в горячих цехах, а также для образования так называемых воздушных оазисов (участков производственной зоны, которые резко отличаются своими физико-химическими характеристиками от остального помещения).

    Воздушные и воздушно-тепловые завесы предназначены для предотвращения проникновения в помещения значительных масс холодного наружного воздуха при необходимости частого открывания дверей или ворот. Воздушная завеса создается струей воздуха, которая направляется из узкой длинной щели, под некоторым углом навстречу потока холодного воздуха. Канал с щелью размещают сбоку или внизу ворот или дверей (рис. 2.4.4).



    Рис. 2.4.4 Воздушно-тепловые завесы:

    а — с нижней подачей воздуха, б — с боковой двухсторонней подачей воздуха; в — с боковой односторонней подачей воздуха

    Местная вытяжная вентиляция осуществляется при помощи местных вытяжных зонтов, всасывающих панелей, вытяжных шкафов, бортовых отсосов (рис. 2.4.5) и других устройств.

    Конструкция местного отсоса должна обеспечить максимальное улавливание вредных выделений при минимальном количестве удаляемого воздуха. Кроме того, она не должна быть громоздкой и мешать обслуживающему персоналу работать и следить за технологическим процессом Основными факторами при выборе типа местного отсоса являются характеристика вредных выделений (температура, плотность паров, токсичность), положение рабочего при выполнении работы, особенности технологического процесса и оборудования.


    а б в г

    Рис 2. 4.5. - Примеры местной вытяжной вентиляции

    а — вытяжной зонт, б — всасывающая панель в — вытяжной шкаф с комбинированной вытяжкой г — бортовой отсос с передувом
    Методы расчета систем искусственной вентиляции
    Основная цель расчета общеобменных систем искусственной вентиляции — определить количество воздуха, которое необходимо подать и удалить из помещения При расчете вентиляции в цехах, воздухообмен, как правило, определяют расчетным путем по конкретным данным о количестве вредных выделений (тепла, влаги, паров, газов)

    Для цехов, где выделяются вредные вещества, воздухообмен определяют по количеству вредных газов, паров, пыли, которые поступают в рабочую зону, с целью разбавления их приточным воздухом до предельно допустимых концентраций:

    (2.1)

    где U — количество вредных выделений в цехе, мг/ч;

    к1, — предельно допустимая концентрация вредных выделений в воздухе цеха, мг/м3,

    k2 — концентрация вредных выделений в приточном воздухе, мг/м3.

    В соответствии со СНиП k2 ≤ k1.

    Для помещений, где вредные выделения отсутствуют (или количество их незначительно) приток (вытяжку) воздуха можно определить по кратности воздухообмена (k) — отношения объема вентиляционного воздуха L (м3/час) к объему помещения Vп (м3):

    (2.2)

    Кратность воздухообмена показывает сколько раз в течение часа необходимо поменять весь объем воздуха в данном помещении для создания нормальных условий воздушной среды. Определив по справочнику кратность воздухообмена при известном объеме помещения можно рассчитать объем приточного воздуха или вытяжки.

    Для помещений, в которых отсутствуют вредные выделения и избыточное тепло и нет необходимости в создании метеорологического комфорта можно использовать формулу:

    (2.3)

    где l - минимальная подача воздуха на одного работающего в соответствии с санитарными нормами (при объеме помещения на одного работающего, до 20 м3 – 30м3/ч, a при объеме больше 20м3 — 20 м3/ч);

    n — количество работающих в помещении.

    При расчете местной вытяжной вентиляции количество воздуха, удаляемое местным отсосом (зонт, панель, шкаф) можно определить по формуле:

    (2.4)

    где F — площадь сечения отверстия местного отсоса, м2;

    v — скорость движения удаляемого воздуха в этом отверстии (принимается от 0,5 до 1,7 м/с в зависимости от токсичности и летучести газов и паров).

    Естественная и искусственная вентиляции должны отвечать следующим санитарно-гигиеническим требованиям.

    — создавать в рабочей зоне помещений соответствующие нормам метеорологические условия труда (температуру, влажность и скорость движения воздуха);

    — полностью удалять из помещений вредные газы, пары, пыль и аэрозоли или растворять их до предельно допустимых концентраций;

    — не вносить в помещение загрязненный воздух снаружи или путем засасывания из смежных помещений;

    — не создавать на рабочих местах сквозняков или резкого охлаждения;

    — быть доступными для управления и ремонта в процессе эксплуатации;

    — не создавать в процессе эксплуатации дополнительных неудобств (например, шума, вибраций, попадания дождя, снега)

    Следует учесть, что к вентиляционным системам, установленным в пожаро- и взрывоопасных помещениях предъявляется целый ряд дополнительных требований, которые в этом разделе не рассматриваются.

    Кондиционирование воздуха – это создание и автоматическое поддержание в помещениях постоянных или изменяющихся по программе определенных метеорологических условий, наиболее благоприятных для работающих или требуемых для нормального протекания технологического процесса. Кондиционированние воздуха может быть полным и неполным. Полное кондиционирование воздуха предусматривает регулирование температуры, влажности, подвижности и чистоты воздуха, а также, в ряде случаев, возможность его дополнительной обработки (обеззараживания, ароматизации, ионизации). При неполном кондиционировании регулируется только часть параметров воздуха.

    Кондиционирование воздуха осуществляется кондиционерами, которые подразделяются на центральные и местные. Центральные кондиционеры предназначены для обслуживания больших за размерами помещений.
    Определение выделений тепла.

    Расчет воздухообмена при проектировании общеобменной вентиляции и кондиционирования воздуха.
    Действие общеобменной вентиляции основано на разбавлении выделяющихся вредных веществ свежим воздухом до предельно допустимых концентраций или температур. Одна из задач проектирования обще обменной вентиляции и кондиционирования состоит в том, чтобы рассчитать требуемый тепловой режим помещения. При составлении теплового и влажностного балансов помещения учитывают:

    • тепловыделение работающих машин;

    • тепловыделение от источников освещения;

    • тепловыделение, поступающее в помещение от солнечной радиации;

    • тепловыделение от людей.

    Воздухообмен по теплу определяем по формуле, м3
    (2.5)
    где Qизб - избыточное тепло в помещении, ккал/ ч;

    С - удельная теплоемкость воздуха при постоянном давлении, равная одному кДж/кгК;

    γ - плотность приточного воздуха, кг/м3;

    tу - температура воздуха, удаляемого из цеха, °С;

    tn -температура приточного воздуха, °С.

    Для помещений с влаговыделениями воздухообмен определяют по избыткам влаги
    (2.6)
    где G - масса водяных паров, выделяемых различными источниками в помещение, г/ч;

    dy- влагосодержание удаляемого из помещения воздуха, г/кг;

    dH - влагосодержание наружного (приточного) воздуха, г/кг;

    γ - плотность приточного воздуха, кг/м3.
    Кратность воздухообмена показывает сколько раз в течение часа необходимо поменять весь объем воздуха в данном помещении для создания нормальных условий воздушной среды. Определив по справочнику кратность воздухообмена при известном объеме помещения, можно рассчитать объем приточного воздуха или вытяжки.


    • Тепловыделения работающих машин, механизмов, электродвигателей, ккал/ч


    Q1 = N(l - η)860/ η, (2.7)
    где Nсут - установочная или номинальная мощность электродвигателя, Вт;

    η - КПД электродвигателя.

    • Тепловыделение от источников освещения, ккал/ч


    Q2 = qЕнS, (2.8)

    где Q2 - тепло от источников света, ккал/ч

    Еннормированная освещенность, принятая по нормам СНиП ІІ-4-79. Естественное и искусственное освещение. Нормы проектирования.

    q=0,05 ккал – тепло, выделяемое на 1 м2 освещаемой поверхности

    • Тепловыделение, поступающее от солнечной радиации в помещение для остекленных поверхностей, ккал/ч


    Q3 = FостqостAост, (2.9)
    Q3 - тепловыделение от солнечной радиации, ккал/ч;

    Fост- площадь поверхности остекления, м2;

    qост - величина радиации через 1 м2 остекления, ккал/(м2ч); солнечная радиация через остекление для определенной широты

    35° = 20 ккал/(м2 ч); для 45° = 18 ккал/(м2 ч);

    для 55° = 15 ккал/(м2 ч); и для 65° = 12 ккал/(м2 ч);

    Аост- коэффициент, зависящий от характеристики остекления;

    Ниже приведены значения коэффициента Аост:

    Характеристика остекления


    Двойное в одной раме 1,15

    Одинарное 1,45

    Обычное загрязнение стекла 0,8

    Сильное загрязнение 0,7

    Забелка окон 0,6

    • Тепловыделение от работающих

    Q4=q1n (2.10)

    Q4 - тепловыделение от работающих, ккал/ч;

    q1 - тепловыделение от одного человека в зависимости от тяжести выполняемых работ принятое по ГОСТ 12.1.005-88. ССБТ «Воздух рабочей зоны. Общие санитарно-гигиенические требования»;

    n – количество работающих.

    После расчета количества воздуха, которое должно поступать в помещение необходимо выбрать кондиционер.
    2.5. Организация производственного освещения
    2.5.1. ОБЩИЕ ТРЕБОВАНИЯ И РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ ПРОИЗВОДСТВЕННОГО ОСВЕЩЕНИЯ
    Основные светотехнические понятия и единицы

    Освещение производственных помещений характеризуется количественными и качественными показателями. К основным количественным показателям относятся: световой поток, сила света, яркость и освещенность.

    К основным качественным показателям зрительных условий работы можно отнести: фон, контраст между объектом и фоном, видимость.

    Световой поток (Ф) – это мощность светового видимого излучения, которая оценивается глазом человека по световым ощущениям. Единицей светового потока является люмен (лм) световой поток от эталонного точечного источника в одну канделу (международную свечу), расположенного в вершине телесного угла в один стерадиан.

    Сила света (1) – это величина, которая определяется отношением светового потока (Ф) к телесному углу (w), в пределах которого световой поток равномерно распределяется:

    l = (2.11)

    За единицу силы света принята кандела (кд) - сила света точечного источника, излучающего световой поток в 1лм, который равномерно распределяется внутри телесного угла в 1 стерадиан.

    Яркость (В) – определяется как отношение силы света, излучаемого элементом поверхности в данном направлении, к площади светящейся поверхности:

    В = (2.12)

    где 1- сила света, излучаемая поверхностью в заданном направлении.

    S – площадь поверхности;

    А – угол между нормалью к элементу поверхности S и направлением, для которого определяется яркость.

    Единицей яркости является н и m (нт) – яркость светящейся поверхности, от которой в перпендикулярном направлении излучается свет силой в 1 канделу с 1м2.

    Освещенность (Е) – отношение светового потока (Ф), падающего на элемент поверхности, к площади этого элемента (S):

    Е=Ф/S (2.13)

    Ф – световой поток, лм

    S – площадь, м2

    За единицу освещенности принят л ю к с (лк) - уровень освещенности поверхности площадью 1 м2, на которую падает равномерно распределяясь, световой поток в 1 люмен.

    Фон – поверхность, прилегающая непосредственно к объекту, на которой он рассматривается. Фон характеризуется коэффициентом отражения поверхности ρ, численно равным отношению светового потока, отраженного от поверхности, к световому потоку, падающему на неё. Фон считается светлым при ρ > 0,4, средним – при ρ = 0,2 – 0,4 и темным, если ρ < 0,2.

    Контраст между объектом и фоном (k) характеризуется соотношением яркостей рассматриваемого объекта (точка, линия, знак и другие элементы, которые требуется различить в процессе работы) и фона. Контраст между объектом и фоном определяется по формуле:

    (2.14)

    где Во и Вф соответственно яркости объекта и фона, нт.

    Контраст считается большим при к>0,5, средним - при к = 0,2 – 0,5 и малым - при к < 0,2.

    Видимость (v) характеризует способность глаза воспринимать объект. Видимость зависит от освещенности, размера объекта различия, его яркости, контраста между объектом и фоном, длительности экспозиции:

    V = (2.15)

    где к – контраст между объектом и фоном;

    кпор – пороговый контраст, то есть наименьший контраст, различимый глазом при данных условиях.

    Для измерения светотехнических величин применяют люксметры, фотометры, измерители видимости и другие приборы.

    В производственных условиях для контроля освещенности рабочих мест и общей освещенности помещений чаще всего используют люксметры типов Ю-116, Ю-117 и универсальный портативный цифровой люксметр-яркомер ТЭС 0693. Работа этих приборов основана на явлении фотоэффекта – превращении световой энергии в электрическую.

    Для создания благоприятных условий зрительной работы, исключающих быстрое утомление глаз, возникновение профессиональных заболеваний, несчастных случаев содействующих повышению производительности труда и качества продукции, производственное освещение должно отвечать следующим требованиям:

    - создавать на рабочей поверхности освещенность, соответствующую характеру зрительной работы, не ниже установленных норм;

    - обеспечить достаточную равномерность и постоянства уровня освещенности в производственных помещениях во избежание частой переадаптации органов зрения;

    - не создавать ослепляющего действия как от самих источников освещения, так и от других предметов, находящихся в поле зрения;

    - не создавать на рабочей поверхности резких и глубоких теней (особенно подвижных);

    - обеспечить достаточный для различия деталей контраст освещаемых поверхностей;

    - не создавать опасных и вредных производственных факторов (шум, тепловые излучения, опасность поражения током, пожаро и взрывоопасность светильников);

    - должно быть надежным и простым в эксплуатации, экономичным и эстетичным.

    В зависимости от источника света производственное освещение может быть естественным, создаваемым прямыми солнечными лучами и рассеянным светом небосвода; искусственным, создаваемым электрическими источниками света и совмещенным, при котором недостаточное по нормам естественное освещение дополняется искусственным.

    Естественное освещение подразделяется на: боковое (одно или двухстороннее), которое осуществляется через световые проёмы (окна) в наружных стенах; верхнее, осуществляемое через фонари и световые проемы в крышах и перекрытиях; комбинированное – сочетание верхнего и бокового освещения.

    Искусственное освещение может быть общим и комбинированным.

    Общим называют освещение, при котором светильники размещаются в верхней зоне помещения (не ниже 2,5м над полом) равномерно (общее равномерное освещение) или с учетом расположения рабочих мест (общее локализованное освещение). Комбинированное освещение состоит из общего и местного. Его целесообразно применять при работах высокой точности, а также, если необходимо создать определенное или переменное, в процессе работы, направление света. Местное освещение создается светильниками, которые концентрируют световой поток непосредственно на рабочих местах. Применение только местного освещения не допускается, учитывая опасность производственного травматизма и профессиональных заболеваний. (Общее в помещ. 2 лк, охранное аварийное 0,5 лк, на открытой территории 0,2 лк)
    2.5.2. ОРГАНИЗАЦИЯ ЕСТЕСТВЕННОГО ОСВЕЩЕНИЯ
    Естественное освещение имеет важное физиолого-гигиеническое значение для работающих. Оно благоприятно воздействует на органы зрения, стимулирует физиологические процессы, повышает обмен веществ и улучшает развитие организма в целом. Солнечное излучение согревает и обеззараживает воздух, очищая его от возбудителей многих болезней (например, вируса гриппа). Кроме того, естественный свет имеет и важное психологическое значение, создавая у работающих ощущение непосредственной связи с окружающей средой.

    Естественному освещению свойственны и недостатки: оно непостоянно в различное время дня и года, в различную погоду, неравномерно распределяется по площади производственного помещения при неудовлетворительной его организации может вызывать ослепление органов зрения.

    Естественное освещение организуется через разного рода световые проемы.

    На уровень освещенности помещения при естественном освещении влияют следующие факторы: световой климат; площадь и ориентация световых проемов; степень чистоты стекла в световых проемах; окраска стен и потолка помещения; глубина помещения; наличие предметов, закрывающих окно как изнутри, так и снаружи помещения.

    Естественное освещение оценивается коэффициентом е естественной освещенности (КЕО):

    е = (2.16)

    где Евн - освещенность, создаваемая внутри помещения, лк;

    Енар - освещенность земной поверхности от небосвода, лк.

    Нормированное значение (КЕО) ен для помещений, которые размещены в I, II, IV,V поясах светового климата, определяется по формуле

    ен= енIII (2.17)
    где енIII – нормированное значение КЕО согласно СНиП ІІ-4-79. Нормы проектирования. Естественное и искусственное освещение по табл. 2.5.1;

    m – коэффициент светового климата;

    с – коэффициент солнечности климата

    Территория Украины по поясам светового климата представлена на рис. 2.5.1.

    Коэффициент m для IV пояса светового климата равен 0,9.

    В охране труда нормируется еmin зависимости от следующих факторов:

    ● вида выполняемой работы (помещения);

    ● расположения световых проемов;

    ● конструктивных особенностей световых проемов и расположенных рядом строений.

    При боковом естественном освещении минимальное значение коэффициента естественной освещенности (еmin) нормируется:

    ● при одностороннем - в точке, расположенной на расстоянии 1м от стены, наиболее удаленной от световых проемов;

    ● при двустороннем - в точке посередине помещения на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности (или пола);


    Рис. 2.5.1 - Территория Украины по поясам светового климата
    При верхнем и совмещенном освещении нормируется среднее значение КЕО (еср).

    Под условной поверхностью понимается условно принятая горизонтальная поверхность, расположенная на высоте 0,8 м от пола. При экспериментальном определении КЕО требуется производить замеры освещенности внутри и снаружи здания одновременно, когда небо затянуто облаками. Точку для измерения наружной освещенности выбирают на открытом участке земной поверхности.

    При совмещенном освещении КЕО определяют по формуле:

    ei= eб + eв, (2.18)

    где еб и ев - КЕО соответственно при боковом и верхнем освещении.
    2.5.3. ОРГАНИЗАЦИЯ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ
    Основное отличие ночных условий труда от дневных состоит в том, что при ночных условиях отсутствует достаточная освещенность поля зрения работающего равномерно распределенным световым потоком. Поэтому необходимо создавать такое искусственное освещение, при котором суммарный световой поток от всех установленных в рабочей зоне светильников распределялся бы равномерно.

    Наименьшая освещенность рабочих поверхностей в производственных помещениях регламентируется СНиП ІІ-4-79 и зависит, в основном, от характеристики зрительной работы разряда зрительной работы, наименьшего размера объекта различения, контраста объекта с фоном, характеристики фона и типа освещения (табл.2.5.1). Нормы носят межотраслевой характер. На их основе, как правило, разрабатывают нормы для отдельных отраслей промышленности.

    В СНиП ІІ-4-79 восемь разрядов зрительной работы, из которых первых шесть характеризуются размерами объекта различия. Для 1-5 разрядов, которые кроме того имеют еще и по четыре подразряда, (а,б, в, г), нормируемые значения зависят не только от наименьшего размера объекта различия, но и от контраста объекта с фоном и характеристики фона. Наибольшая нормируемая освещенность составляет 5000 лк (разряд 1а), а наименьшая – 30 лк (разряд 8а).

    Выбор системы освещения включает и решение вопроса о размещении выбранных источников света над производственной площадью с учетом условий крепления или подвеса, дальности действия, допустимой высоты подвеса, мощности.

    В качестве источников искусственного освещения широко используются лампы накаливания и газоразрядные лампы.

    Лампы накаливания относятся к тепловым источникам света. Под действием электрического тока нитка накаливания (вольфрамовая проволока) нагревается до высокой температуры и излучает поток лучистой энергии. Эти лампы характеризуются простотой конструкции и изготовления, относительно низкой стоимостью, удобством эксплуатации, широким диапазоном напряжения и мощностей. Рядом с преимуществами им присущи и существенные недостатки: большая яркость (ослепляющее действие); низкая световая отдача (4-18 лм/Вт); относительно малый срок эксплуатации (до 2,5 тыс. ч.); преобладание желто-красных лучей по сравнению с естественным светом; высокая температура нагрева (140оС), что делает их пожароопасными.

    Газоразрядные лампы излучают свет оптического диапазона спектра в результате электрического разряда в среде инертных газов и паров металла и явления люминесценции.

    Основным преимуществом газоразрядных ламп является их экономичность. Световая отдача этих ламп составляет 40 – 100 лм/Вт, что в 5 раз превышает световую отдачу ламп накаливания. Срок эксплуатации – до 10 тыс. ч., а температура нагрева (люминесцентные 30-60 оС). Кроме того, газоразрядные лампы обеспечивают световой поток практически любого спектра, путем подбора соответствующих инертных газов, паров металла, люминофора. Так, по спектральному составу видимого света выпускают люминесцентные лампы: дневного света (ЛД), дневного света с улучшенной передачей цветов (ЛДЦ), холодного белого (ЛХБ), теплого белого (ЛТБ), белого (ЛБ) и др.

    Основным недостатком газоразрядных ламп является пульсация светового потока, которая может обусловить возникновение стробоскопического эффекта. В результате такого эффекта искажается зрительное восприятие передвигающихся и вращающихся предметов, что может увеличить опасность травматизма. К недостаткам этих ламп можно также отнести сложность схемы включения, шум дросселей, значительное время между включением и зажиганием ламп, относительную дороговизну.

    Газоразрядные лампы бывают низкого и высокого давления. Газоразрядные лампы низкого давления, которые называются люминесцентными, широко применяются для освещения помещений, как на производстве, так и в быту. Однако они не могут использоваться при низких температурах и пониженных напряжениях (плохо загораются) и характеризуются малой единичной мощностью при больших размерах самих ламп.

    Газоразрядные лампы высокого давления применяются в условиях, когда необходима высокая световая отдача при компактности источников света и стойкости к условиям внешней среды. Среди этих типов ламп чаще всего используются металлогалогенные (МГЛ), дуговые ртутные (ДРЛ), и натриевые.

    Основными характеристиками источников искусственного освещения являются: номинальное напряжение питания, В; электрическая мощность лампы, Вт; световой поток, лм; световая отдача, лм/Вт; срок эксплуатации; спектральный состав света; стоимость.

    Осветительная арматура перераспределяет световой поток лампы в пространстве, или преобразует ее свойства (изменяет спектральный состав излучения), предохраняет глаза работающих от ослепляющего действия ламп. Кроме того, она защищает источник света от влияния окружающей пожаро- и взрывоопасной, химически-активной среды, механических повреждений, пыли, грязи, атмосферных осадков.


    Основными светлотехническими характеристиками светильников являются: светораспределение, кривая силы света, коэффициент полезного действия и защитный угол.

    Коэффициент полезного действия (КПД) светильника определяется отношением светового потока светильника к световому потоку установленной в нем лампы. Осветительная арматура поглощает часть светового потока, излучаемого источником света, однако благодаря рациональному перераспределению света в необходимом направлении увеличивается освещенность на рабочих поверхностях.

    По конструктивному исполнению светильники подразделяют на: открытые (лампа не отделена от внешней среды), защищенные (лампа отделена оболочкой, допускающей свободный проход воздуха), закрытые (оболочка защищает от проникновения внутрь светильника крупной пыли), пыленепроницаемые, влагозащищенные, взрывобезопасные и повышенной надежности против взрыва. По назначению светильники могут быть общего и местного освещения.

    Для всех производственных помещений проектируют систему общего или комбинированного освещения. При выполнении работ 1-4 разрядов рекомендуется использовать, как правило, комбинированную систему освещения, поскольку достижение необходимой освещенности при общей системе освещения требует большого расхода электрической энергии и является нецелесообразным. С этой же точки зрения следует отдавать предпочтение локализованному освещению, в том числе и в системе комбинированного, выдерживая при этом допустимые нормы неравномерности освещения (СНиП ІІ-4-79). Освещенность рабочей поверхности, создаваемая светильниками общего освещения в системе комбинированного освещения, однако во всех случаях не меньше 150 лк при газоразрядных лампах и 50 лк – при лампах накаливания.

    С гигиенической точки зрения система общего освещения более совершенна, поскольку дает возможность более равномерно распределить световую энергию.

    Выбирая источники света, следует отдавать предпочтение люминесцентным лампам, поскольку они энергетически более экономны. Кроме того, они по спектральным характеристикам максимально приближаются к естественному свету, что важно при совмещенном освещении.

    Если нет технологических указаний, касающихся спектрального состава излучаемого света, то лучше всего, с экономической точки зрения, применять люминесцентные лампы типа ЛБ, у которых наивысшая светоотдача.

    Для уменьшения начальных расходов на осветительные установки и расходов на их эксплуатацию следует использовать лампы большей мощности. Однако при этом может ухудшиться равномерность освещения, поскольку последняя обратно пропорциональна расстоянию между источниками света.

    В общем случае равномерность освещения удается обеспечить тогда, когда расстояние между центрами светильников не превышает двойной высоты их установки. В то же время высота, на которой устанавливаются светильники, зависит от высоты помещения, мощности лампы, класса светильника и системы освещения. Наименьшая высота установки над полом светильников с числом люминесцентных ламп до четырех – 2,6 м, а при четырех и более – 3,2 м.

    Выбор типа светильников проводится с учетом характеристики помещения, для которого проектируется освещение. Для помещений, стены и потолок которых имеют невысокие отражающие свойства целесообразно применять светильники прямого света, которые, направляя излучение ламп вниз на рабочие поверхности, гарантируют минимальные потери и наилучшее использование светового потока. Однако следует иметь ввиду, что светильники этого класса создают резкие падающие тени от посторонних предметов, что необходимо учитывать при их расположении.
    1   2   3   4


    написать администратору сайта