Главная страница
Навигация по странице:

  • 2. Зачем нужна система ППД

  • 5. Определение коэффициента обводненности в промысловых условиях.

  • 6. Формула Дюпюи, область применения.

  • 7. Причины образования конусов подошвенной воды и влияние на них анизотропии

  • 8. . Площадные системы заводнения.

  • 9. Рядные системы заводнения.

  • 10. Основные виды внутриконтурного заводнения.

  • 11. Упругий режим.

  • 1. Может ли обводняться продукция до начала работы системы ппд


    Скачать 1.02 Mb.
    Название1. Может ли обводняться продукция до начала работы системы ппд
    Дата10.10.2022
    Размер1.02 Mb.
    Формат файлаdocx
    Имя файлаOtvety_Kopytov.docx
    ТипЗакон
    #726190
    страница1 из 7
      1   2   3   4   5   6   7

    1.Может ли обводняться продукция до начала работы системы ППД?

    Для увелич. коэф. нефтеотдачи, обеспечения полноты отбора нефти и сокращ. сроков разр-ки м-я применяются методы искусственного воздействия на залежи углеводородов (методы управления процессом выработки запасов) – методы ППД.

    Выделяют: законтурное; внутриконтурное: блоковое; площадное; избирательное; очаговое; барьерное.
    Возможные причины обводнения:

    Поступление воды по продуктивному горизонту

    а) Заколонные перетоки в интервале продуктивного пласта

    б) Прорыв пластовой воды

    в) Образование водяного конуса

    2. Поступление воды вследствие нарушения крепления скважин

    а) Затрубная циркуляция вследствии нарушения цементного камня, контакта обсадных труб с цементным камнем, контакта цементного камня со стенкой скважины

    б) Нарушение герметичности эксплуатационной колонны (разруш цемент мостов, коррозионное разрушение)

    2. Зачем нужна система ППД?

    По мере извлечения углеводородов из залежи ее естественная энергия уменьшается, как и дебиты добывающих скважин. Количество добываемой нефти зависит от физических свойств пород и флюидов, от энергетического состояния залежи, от количества скважин и их расположения и т.д.

    Если использовать только естественные энергетические источники: -то невысокие коэффициенты нефтеотдачи; - и в значительной степени растянуть сроки раз-ки м-я. => применяются методы искусственного воздействия на залежи углеводородов (методы управления процессом выработки запасов).

    Заводнение нефтяных месторождений применяют с целью вытеснения нефти водой из пластов и поддержания при этом пластового давления на заданном уровне. На новых месторождениях обеспечивается заданная динамика отбора нефти и газа, на старых – замедление темпов ее падения.

    Законтурное– нагн. скв. располагают за внешним контуром нефтеносности. При небольшом давлении на контуре питания или при большой удаленности контура применив законтурное заводнение можно приблизить контур к залежи и поддерживать в нем достаточное давление, тем самым повысить темп отбора.

    Внутриконтурное– разрезание залежи рядами нагн. скважин на отдельные площади, тем самым более полно ввести залежь в разработку, увеличить текущий дебит и сократить срок разработки залежи. Благоприятными условиями для внутриконтурного заводнения является наличие подошвенной воды и монолитность пласта.

    Блоковое - на крупных м-ях, создают несколько рядов нагн. скважин, разрезая залежь на блоки, в которых по несколько рядов доб. скв. (до 4-5 рядов). Ширина блоков при плохой проницаемости меньше. Блоковое з. часто применяют совместно с законтурным. В западной Сибири с начала раз-ки применяют в основном блоковое заводнение.

    Площадное - на поздних стадиях разработки для вовлечения ранее не затронутых и слаборазрабатываемых участков залежи.

    а) Линейное – скважины в шахматном порядке ; б) Четырехточечное; в) Пятиточечное; г) Семиточечное; д) Девятиточечная

    Избирательное. м-е буриться по треугольной или квадратной сеткой, на основе комплексного анализа, ГИС, результатов испытаний выбирают скважины лучше принимающие воду и используют их под ППД.

    Очаговое. Когда пробурено много скважин, детально изучено геологическое строение м-я и выявлена прерывистость продуктивных пластов или их выклинивание, наличие линз. нагн. скважины располагают так, чтобы обеспечить выработку незатронутых разработкой участков.

    Барьерное. На м-ях с газовой шапкой нагн. скв. располагают по внутреннему контуру газоносности, тем самым отсекая газовую часть от нефтяной, что позволяет одновременно разрабатывать обе части пласта.

    3.

    4. Текущая и накопленная добыча нефти?

    Состояние разработки эксплуатационного объекта или его части (пласта, блока, участка) характеризуется такими основными показателями, как текущая годовая (квартальная, месячная) и накопленная добыча нефти, газа, попутной воды.

    Текущая добыча характеризует количество добытой нефти за определенный период (год, месяц). Накопленная добыча численно равна всей добытой нефти на месторождении (объекте) за весь срок его эксплуатации. Qнак=Qc.нач.р-ки=∑Qi.

    Изменение в процессе эксплуатации объекта основных (и других) текущих показателей разработки во времени или в зависимости от нефтеизвлечения (газоизвлечения), а также от степени использования извлекаемых запасов принято называть динамикой соответствующих показателей разработки. При анализе разработки эксплуатационных объектов и при обобщении опыта разработки групп эксплуатационных объектов обычно используют годовые показатели.

    Основные показатели разработки выражают в абсолютных единицах измерения (добыча нефти, воды, жидкости в тыс. т, добыча газа в млн. м3).

    Для сравнительного анализа результатов разработки разных эксплуатационных объектов используют выражение этих показателей в относительных единицах: годовую добычу нефти, газа характеризуют темпом разработки, выражая ее в процентах начальных извлекаемых запасов. =Qгод/Qниз

    Годовой отбор жидкости из нефтяных объектов также выражают в процентах начальных извлекаемых запасов нефти.

    Годовую добычу нефти, газа характеризуют, кроме того, темпом отбора остаточных (текущих) извлекаемых запасов, выражая его в процентах остаточных (текущих) запасов. Темп отбора=Qн.год/Qост.извлек

    Полученную с начала разработки на определенную дату добычу нефти, газа выражают в процентах начальных балансовых запасов (текущее нефтегазоизвлечение) и в процентах начальных извлекаемых запасов (степень использования извлекаемых запасов).

    5. Определение коэффициента обводненности в промысловых условиях.

    Коэффициент обводненности - это отношение объемной доли потока вытесняющей жидкости (воды) к суммарному потоку двух фаз (нефть +вода)

    Функция Баклея-Леверетта (исп-ся для расчета постепенного обводнения пр-ции скв):



    k1,k2 - относительные фазовые проницаемости,

    σ – насыщенность



    1. Находим относительные фазовые проницаемости

    2. определяем f(s) и f’(σ)

    3.Время подхода фронта воды и обводненность после прорыва воды:

    Ф-ция Баклея - Леверетта или функцией распределения потоков фаз f(s), представляет собой отношение скорости фильтрации вытесняющей фазы к суммарной скорости, и равна объемной доле потока вытесняющей жидкости (воды) в суммарном потоке двух фаз. Ф-ция Б-Л определяет полноту вытеснения и характер распределения насыщенности по пласту.

    В ид кривых функции f(σ) и ее производной f ¢( σ) показан на рис.1. С ростом насыщенности f(σ) монотонно возрастает от 0 до 1. Характерной особенностью графика f(σ) является наличие точки перегиба sп , участков вогнутости и выпуклости, где вторая производная f ²(σ) соответственно больше и меньше нуля. Эта особенность в большой степени определяет специфику фильтрационных задач вытеснения в рамках модели Баклея - Леверетта.


    Рис.1 . Вид функции Баклея-Леверетта и её производной


    6. Формула Дюпюи, область применения.

    Для разработки месторождений наибольшее значение имеет плоско-радиальный тип течения (приток к скважине). Формула Дюпии:



    Анализ:

    K h/m коэф гидропроводности[м3/(Па*c)], lnr/r-фильтрац сопр-е.

    1. Дебит не зависит от r, а только от депрессии d рк. График зависимости Q от d рк (Рис.3.4) называется индикаторной диаграммой, а сама зависимость - индикаторной. Отношение дебита к депрессии называется коэффициентом продуктивности скважины (хар-т изм-е дебита скв при изм-и депрессии на пласт на 1)



    2. Градиент давления и скорость обратно пропорциональны расстоянию (рис.3.5) и образуют гиперболу с резким возрастанием значений при приближении к забою.

    3. Графиком зависимости р=р( r ) является логарифмическая кривая (рис.3.6), вращением которой вокруг оси скважины образуется поверхность, называемая воронкой депрессии. Отсюда, основное влияние на дебит оказывает состояние призабойной зоны, что и обеспечивает эффективность методов интенсификации притока.

    4 . Изобары - концентрические, цилиндрические поверхности, ортогональные траекториям.

    5 . Дебит слабо зависит от величины радиуса контура rкдля достаточно больших значений rк /rc, т.к. rк /rc входят в формулу под знаком логарифма.

    По индикаторным диаграммам зависимости дебита от депрессии находят:

    1. Установившееся или неустановившееся движение флюида

    Коэффициент продуктивности

    7. Причины образования конусов подошвенной воды и влияние на них анизотропии?
    Конусообразование происходит за счет подтягивая подошвенной воды к забоям добывающих скважин по мере ее эксплуатации. При повышение дебита скважины над предельным путем создания повышенной депрессии вероятность подтягивая конуса подошвенных под увеличивается.

    С уменьшением вертикальной проницаемости kв или параметра анизотропии n Qпр уменьшается. Это означает, что уменьшение доли дебита за счет подтока из невскрытой части пласта происходит в результате ухудшения вертикальной проницаемости пласта.

    Горные породы необходимо разделять по ориентированности изменения их характеристик в пространстве. С этой позиции выделяют изотропные и анизотропные тела. Изотропия - это независимость изменения физических параметров от направления, анизотропия - это различные изменения по отдельным направлениям.

    Однородный изотропный пласт – равенство проницаемости по трем взаимно перпендикулярным направлениям: Кх=Ку=Кz. Для однородного анизотропного Кх=Ку=Кг; Кz=Кв не равно Кг.

    *=(Кг\Кв) – коэффициент анизотропии.

    Для большинства поровых коллекторов коэффициент анизотропии больше 1 (1), т.к. проницаемость по горизонтали Кг больше, чем проницаемость по вертикали Кв т.е. Кг Кв. Следовательно, наличие непроницаемых или малопроницаемых пропластков затрудняет вертикальное движение воды и газа, и тем самым можно сделать вывод - чем больше анизотропия пласта, тем меньше конусообразование.

    8. . Площадные системы заводнения.
    Площадное заводнение характеризуется рассредоточенной закачкой воды в залежь по всей площади ее нефтеносности. Площадные системы заводнения по числу скважино-точек каждого элемента залежи с расположенной в его центре одной добывающей скважиной могут быть четырех-, пяти-, семи- и девятиточечные , также линейные ( рис. 4 ).

    Наиболее часто используемые: пятиточечную, семиточечную и девятиточечную.

    Пятиточечная система (рис. 12). Элемент системы представляет собой квадрат, в углах которого находятся добы вающие, а в центре — нагнетательная скважина. Для этой системы отношение нагнетательных и добывающих скважин со-ставляет 1 :1,w = 1.

    С емиточечная система (рис. 13). Элемент системы представляет собой шестиугольник с добывающими скважинами в углах и нагнетательной в центре. Доб. скв.расположены в углах шестиугольника, а нагн.—в центре. Параметр и =1/2, т. е. на одну нагнетательную скважину приходятся две добывающие.

    Девятиточечная система (рис. 14Нагн.скв.:добыв.скв= 1 : 3 , так что w=1/3.

    Самая интенсивная из рассмотренных систем с площадным расположением скважин пятиточечная, наименее интенсивная девятиточечная. Считается, что все площадные системы жесткие, поскольку при этом не допускается без нарушения геометрической упорядоченности расположения скважин и потоков движущихся в пласте веществ использование других нагнетательных скважин для вытеснения нефти из данного элемента, если нагнетательную скважину, принадлежащую данному элементу, нельзя эксплуатировать по тем или иным причинам.

    Если, например, в блочных системах разработки (особенно в трехрядной и пятирядной) не может эксплуатироваться какая-либо нагнетательная скважина, то ее может заменить соседняя в ряду. Если же вышла из строя или не принимает закачиваемый в пласт агент нагнетательная скважина одного из элементов системы с площадным расположением скважин, то необходимо либо бурить в некоторой точке элемента другую такую скважину (очаг), либо осуществлять процесс вытеснения нефти из пласта за счет более интенсивной закачки рабочего агента в нагнетательные скважины соседних элементов. В этом случае упорядоченность потоков в элементах сильно нарушается.

    Площадные с-мы позволяют более рассредоточенно воздействовать на пласт.(разработкиасильно неоднородных по площади пластов). Нагнетательные скважины более рассредоточены по площади, что дает возможность подвергнуть отдельные участки пласта большему воздействию.

    Таким образом, рядные системы предпочтительны при разработке сильно неоднородных по вертикальному разрезу пластов.

    В поздней стадии разработки пласт оказывается в значительной своей части занятым вытесняющим нефть веществом (например, водой). Однако вода, продвигаясь от нагнетательных скважин к добывающим, оставляет в пласте некоторые зоны с высокой нефтенасыщенностью, близкой к первоначальной нефтенасыщенности пласта, т. е. так называемые целики нефти. Для извлечения из них нефти в принципе можно пробурить скважины из числа резервных 5-точечной системы, в результате чего получают девятиточечную систему.

    9. Рядные системы заводнения.
    Практически применяют 1, 3х и 5рядную схемы расположения скважин (чередование одного ряда добывающих скважин и ряда нагнетательных скважин, трех рядов доб. и одного ряда нагнетательных скважин, 5 д.скв и 1 ряда нагн. скв. Более пяти рядов добывающих скважин обычно не применяют, т.к. в центральной части полосы нефтеносной площади, заключенной между рядами нагнетательных скважин, воздействие на пласт заводнением ощущаться практически не будет, => падение пласт. давления. Число рядов – нечетное, необходимо проводить центральный ряд скважин, к которому предполагается стягивать водонефтяной- раздел при его перемещении в процессе разработки пласта. Поэтому центральный ряд скважин - стягивающим рядом. Разновидность рядных с-м — блоковые системы. При этих системах на месторождениях, обычно в направлении, поперечном их простиранию, располагают ряды добывающих и нагнетательных скважин.

    Однорядная система разработки. Расположение скважин при такой системе показано на рис. 6. Рядные системы разработки необходимо характеризовать помимо расстояния между нагнетательными скважинами и расстояния между добывающими скважинами следует учитывать ширину блока или полосы.

    Параметр плотности сетки скважин Sc и параметр NKP для однорядной, трехрядной и пятирядной систем могут принимать примерно такие же или большие значения, что и для систем с законтурным заводнением. Ширина полосы при использовании заводнения может составлять 1 —1,5 км, а при использовании методов повышения нефтеотдачи — меньшие значения.

    Поскольку в однорядной системе число добывающих скважин примерно равно числу нагнетательных, то эта система очень интенсивная. При жестком водонапорном режиме дебиты жидкости доб. скважин равны расходам закачиваемого агента в нагн. скважины. Эту с-му используют при разработке низкопроницаемых, сильно неоднородных пластов с целью обеспечения большего охвата пластов воздействием, а также при проведении опытных работ на месторождениях по испытанию технологии методов повышения нефтеотдачи пластов, поскольку она обеспечивает возможность быстрого получения тех или иных результатов. Вследствие того что по однорядной системе, как и по всем рядным системам, допускается различное число нагн. и доб. скважин в рядах, можно нагн. скважины использовать для воздействия на различные пропластки с целью повышения охвата неоднородного пласта разработкой. Применяются как шахматное, так и линейное расположение скважин.

    При прогнозировании технологических показателей разработки месторождения достаточно рассчитать данные для одного элемента, а затем суммировать их по всем элементам системы с учетом разновременности ввода элементов в разработку.

    Трехрядная и пятирядная системы .Для трехрядной и пятирядной систем разработки имеет значение не только ширина полосы Lп, но и расстояния между нагнетательными и первым рядом добывающих скважин l01, между первым и вторым рядом доб. скважин l12(рис. 8), между вторым и третьим рядом доб. скважин для пятирядной системы l2 з (рис. 9). Ширина полосы Lп зависит от числа рядов доб. скважин и расстояния между ними. Если, например, для пятирядной системы l01= l12 = l23=700 м, то Lп = 4,2 км.

    Рис. 8. Расположение скважин при трехрядной системе разработки: Рис. 9. Расположение скважин при пятирядной системе разработки:

    1 - условный контур нефтеносности; 2- добывающие скважины; 3 – нагнетательные скважины I, 2, 3 — см. рис. 8



    Параметр со для трехрядной систем, равный отношению числа нагнетательных скважин к числу добывающих скважин w равен примерно 1/3, а для пятирядной 1/5. При значительной приемистости нагн. скважин по трехрядной и пятирядной с-мам число их вполне обеспечивает высокие дебиты жидкости доб. скважин и высокий темп разработки м-я в целом. Конечно, трехрядная система более интенсивная, нежели пятирядная, и обеспечивает определенную возможность повышения охвата пласта воздействием через нагн. скважины путем раздельной закачки воды или других веществ в отдельные пропластки. В то же время при пятирядной системе имеются большие, по сравнению с трехрядной, возможности для регулирования процесса разработки пласта путем перераспределения отборов жидкости из отдельных добывающих скважин. Элементы трехрядной и пятирядной систем показаны соответственно на рис. 10 и 11.



    10. Основные виды внутриконтурного заводнения.

    При внутриконтурном заводнении поддержание или восстановление баланса пластовой энергии осуществляется закачкой воды непосредственно в нефтенасыщенную часть пласта.

    В России применяют следующие виды внутриконтурного заводнения:

    • разрезание залежи нефти рядами нагнетательных скважин на отдельные площадки;

    • барьерное заводнение;

    • разрезание на отдельные блоки самостоятельной разработки;

    • избирательное и очаговое;

    • сводовое заводнение;

    • очаговое заводнение;

    • площадное заводнение.

    Система заводнения с разрезанием залежи на отдельные площади применяется на крупных месторождениях платформенного типа с широкими водонефтяными зонами. Эти зоны отрезают от основной части залежи и разрабатывают по самостоятельной системе. На средних и небольших по размеру залежах применяют поперечное разрезание их рядами нагнетательных скважин на блоки (блоковое заводнение). Ширина площадей и блоков выбирается с учетом соотношения вязкостей и прерывистости пластов (литологического замещения) в пределах до 3 – 4 км, внутри размещают нечетное число рядов добывающих скважин ( не более 5 – 7 ).

    Разрезание на отдельные площади и блоки нашло применение на Ромашкинском (23 пласта горизонта Д1 , Татария), Покровском (Оренбургская обл.), Правдинском, Мамонтовском, Западно-Сургутском, Самотлорском и других месторождениях.

    В результате дальнейших исследований, исходя из опыта разработки было установлено, что наиболее целесообразно применять разрезание разрабатываемых пластов рядами нагнетательных скважин в блоке (полосе) находилось не более пяти рядов добывающих скважин. Так возникла современная разновидность рядных систем – блоковые системы разработки нефтяных месторождений: однорядная, трехрядная и пятирядная.

    Барьерное. На м-ях с газовой шапкой нагн. скважины располагают по внутр. контуру газоносности, тем самым отсекая газовую часть от нефтяной. Что позволяет одновременно разрабатывать обе части пласта.

    Избирательное. м-е буриться по треугольной или квадратной сеткой, на основе комплексного анализа, ГИС, результатов испытаний выбирают скважины лучше принимающие воду и используют их под ППД. Достигается более полный охват охват заводнением

    Очаговое. Когда пробурено много скважин, детально изучено геологическое строение м-я и выявлена прерывистость продуктивных пластов или их выклинивание, наличие линз. нагн. скважины располагают так, чтобы обеспечить выработку незатронутых разработкой участков. Оно более эффективно на поздней стадии разработки. Внедрено на месторождениях Татарии, Башкирии, Пермской, Оренбургской областей и т.д.

    Сводовое заводнение . При нем ряд нагнетательных скважин размещают на своде структуры или вблизи него. Если размеры залежи превышают оптимальные, то это заводнение сочетают с законтурным. Сводовое заводнение подразделяется на: осевое, кольцевое и центральное.

    Осевое заводнение предусматривает поддержание пластового давления путем расположения нагнетательных скважин вдоль длинной оси структуры. Полагают, что такой метод заводнения может быть избран в связи со значительным ухудшением проницаемости в периферийной части залежи или с резко ухудшенной проницаемостью в законтурной части.

    Осевое заводнение было осуществлено в США на месторождениях Уиссон

    (1948 г.) и Келли-Снайдер ( 1954 г.) , в России - при разработке Новодмитриевского, Якушкинского, Усть-Балыкского (пласты группы А).

    Кольцевое заводнение. Кольцевой ряд нагнетательных скважин срадиусом, приблизительно равным 0,4 радиуса залежи, разрезает залежь на центральную и кольцевую площади. (Ромашкинское месторождение ).

    Центральное заводнение как разновидность кольцевого ( вдоль окружности радиусом 200 – 300 м размещают 4 – 6 нагнетательных скважин, а внутри ее имеется одна или несколько добывающих скважин).

    П лощадное заводнение характеризуется рассредоточенной закачкой воды в залежь по всей площади ее нефтеносности. Площадные системы заводнения по числу скважино-точек каждого элемента залежи с расположенной в его центре одной добывающей скважиной могут быть четырех-, пяти-, семи- и девятиточечные , также линейные ( рис. 4 ).

    Рис. 4 Площадная четырех-(а), пяти-(б), семи-(В), девятиточечная (г) и линейная (д,е) системы заводнения (с выделенными элементами)

    Линейная система – это однорядная система блокового заводнения, причем скважины размещаются в шахматном порядке. Отношение нагнетательных и добывающих скважин составляет 1 : 1 . Элементом этой системы может служить прямоугольник со сторонами 2L и 2s н = 2 s д = 2s. Если 2L = 2s, то линейная система переходит в пятиточечную с таким же соотношением скважин ( 1: 1 ) . 5т система симметрична и за элемент можно выбрать также обратное размещение скважин с нагн. скважиной в центре (обращенная пятиточечная система). В 9т системе на одну доб. скважину приходится три нагн. (соотношение скважин 3 : 1). В обращенной 9т (с нагн. скважиной в центре квадрата) соотношение нагн. и доб. скважин составляет 1 : 3 . При треугольной сетке размещения скважин имеем 4т ( обращенную семиточечную) и 7т ( или обращенную четырехточечную) системы с соотношением нагн. и доб. скважин соответственно 1:2 и 2:1. Площадное заводнение эффективно при разработке малопроницаемых пластов. Его эффективность увеличивается с повышением однородности, толщины пласта, а также с уменьшением вязкости нефти и глубины залегания залежи.

    11. Упругий режим.

    Условие упругого режима – превышение Рпл, точнее давления во всех точках пласта, над Рнас нефти газом Рн. При этом Рзабне ниже Рн, нефть находится в однофазном состоянии. Созданное в доб. скв. возмущение давления (депрессия) распрост­раняется с течением времени в глубь пласта (наблюдается первая фаза упругого режима). Вокруг скважины образуется увеличивающаяся депрессионная воронка.

    Приток нефти происходит за счет энергии упругости жидкости (нефти), связанной воды и породы — энергии их упругого расширения. При сниже­нии давления увелич. объем нефти и связанной воды и уменьшается объем пор; соответствующий объем нефти посту­пает в скважины. Затем депрессионные воронки отдельных скважин, расширяясь, сливаются, образуется общая депрессионная воронка, которая по мере отбора нефти распространяется до границ залегания залежи.

    Если залежь литологически или тектонически ограничена (замкнута), то в дальнейшем наступает вторая фаза упругого режима, в течение которой на контуре ограничения пласта, со­впадающим с контуром нефтеносности, давление уменьшается во времени; уменьшается также давление в залежи. Упругий ре­жим может быть продолжительным при значительном недонасыщении нефти газом. В противном случае этот режим быстро может перейти в другой вид. В объеме всего пласта упругий за­пас нефти составляет обычно малую долю (приблизительно 5— 10 %) по отношению к общему запасу, однако он может выра­жать довольно большое количество нефти в массовых единицах. В случае ограниченности залежи во второй фазе проявляется разновидность упругого режима - замкнуто-упругий режим.

    Если залежь не ограничена, то общая депрессионная во­ронка будет распространяться в законтурную водоносную область, значительную по размерам и гидродинамически связан­ную с залежью. Упругий режим будет переходить во вторую разновидность — упруговодонапорный режим. Упруговодонапорный режим обусловлен проявлением энергии упругого расшире­ния нефти, связанной воды, воды в водоносной области, пород пласта в нефтяной залежи и в водоносной области и энергии напора краевых вод в водоносной области.

    Д ля замкнуто-упругого и упруговодонапорного режимов ха­рактерно значительное снижение давления в начальный период постоянного отбора нефти (или снижение текущего отбора при постоянном давлении р3). При упруговодонапорном режиме темп дальнейшего снижения давления (текущего отбора) за­медляется. Это связано с тем, что зона возмущения охватывает увеличивающиеся во времени объемы водоносной области и для обеспечения одного и того же отбора нефти требуется уже меньшее снижение давления. Если внешняя граница водоносной области находится выше (на более высокой гипсометрической отметке), чем забой скважины, то кроме энергии упругости дей­ствует потенциальная энергия напора (положения) контур­ной воды.

    Рис. 8 Динамика основных показателей разработки нефтяной залежи при упруговодонапорном режиме.

    ΔP(r,t)=Po-P(r,t)=Θμ/(4πkh)[-Ei(-r2/4æt)] – это основная формула теории упругого режима-Ei – интегрально-показательная функция.

    Запас упругой энергии обусловлен упругоемкостью системы, величина которой определяется след. образом: β=-ΔV/(VΔP), Pгор=Pэф. скелета +Pжидк.

    Для насыщенных пористых сред упругоемкость записывается обобщенно: β*=mоп βж+ βскел.

    ,
      1   2   3   4   5   6   7


    написать администратору сайта