Главная страница
Навигация по странице:

  • Структурная организация скелетной мышцы

  • Молекулярные механизмы сокращения скелетной мышцы

  • Расслабление скелетной мышцы

  • Фазы и режимы сокращения скелетной мышцы

  • Оптимум и пессимум частоты

  • Мощность и скорость сокращения мышцы

  • Уравнение Хилла

  • Общая мощность

  • Литература: «

  • реферат. Биофизика. Биофизика мышечного сокращения


    Скачать 48.34 Kb.
    НазваниеБиофизика мышечного сокращения
    Анкорреферат
    Дата23.02.2023
    Размер48.34 Kb.
    Формат файлаdocx
    Имя файлаБиофизика.docx
    ТипРеферат
    #951538



    РЕФЕРАТ

    Тема: Биофизика мышечного сокращения

    Выполнила: Пирназарова С.А

    Группа: B-CTOБ-07-22

    Приняла: Абдрахманова Ж.Ж

    Шымкент-2023

    План:

    1)Молекулярные механизмы сокращения скелетной мышцы

    2)Фазы и режимы сокращения скелетной мышцы

    3) Работа скелетной мышцы

    4)Структурная организация и сокращение гладких мышц

    5)Физиологические свойства мышц

    6)Уравнение Хилла

    7)Мышечные сокращения в стоматологии

    8)Заключение

    9)Используемая литература

    Введение:

    Мышечное сокращение является жизненно важной функцией организма, связанной с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений – ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счет скелетных мышц. Непроизвольные движения (кроме сокращения сердца) – перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря – обусловлены сокращением гладких мышц. Работа сердца обеспечивается сокращением сердечной мускулатуры

    Структурная организация скелетной мышцы:

    Мышечное волокно и миофибрилла. Скелетная мышца состоит из множества мышечных волокон, имеющих точки прикрепления к костям и расположенных параллельно друг другу. Каждое мышечное волокно (миоцит) включает множество субъединиц – миофибрилл , которые построены из повторяющихся в продольном направлении блоков (саркомеров). Саркомер является функциональной единицей сократительного аппарата скелетной мышцы. Миофибриллы в мышечном волокне лежат таким образом, что расположение саркомеров в них совпадает. Это создает картину поперечной исчерченности


    Саркомер и филламенты. Саркомеры в миофибрилле отделены друг от друга Z -пластинками, которые содержат белок бета-актинин. В обоих направлениях от Z -пластинки отходят тонкие актиновые филламенты. В промежутках между ними располагаются более толстые миозиновые филламенты .

    Актиновый филламент внешне напоминает две нитки бус, закрученные в двойную спираль, где каждая бусина – молекула белка актина . В углублениях актиновых спиралей на равном расстоянии друг от друга лежат молекулы белка тропонина , соединенные с нитевидными молекулами белка тропомиозина.

    Клеточная мембрана мышечного волокна образует инвагинации (поперечные трубочки), которые выполняют функцию проведения возбуждения к мембране саркоплазматического ретикулума. Саркоплазматичекий ретикулум (продольные трубочки) представляет собой внутриклеточную сеть замкнутых трубочек и выполняет функцию депонирования ионов Са++ .

    Двигательная единица.

     Функциональной единицей скелетной мышцы является двигательная единица (ДЕ). ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона. Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга. 

    Молекулярные механизмы сокращения скелетной мышцы:


    Согласно теории скольжения нитей, мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга. Механизм скольжения нитей включает несколько последовательных событий.

    •  Головки миозина присоединяются к центрам связывания актинового филламента

    •  Взаимодействие миозина с актином приводит к конформационным перестройкам молекулы миозина. Головки приобретают АТФазную активность и поворачиваются на 120 ° . За счет поворота головок нити актина и миозина передвигаются на «один шаг» друг относительно друга

    •  Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++

    •  Цикл «связывание – изменение конформации – рассоединение – восстановление конформации» происходит много раз, в результате чего актиновые и миозиновые филламенты смещаются друг относительно друга, Z -диски саркомеров сближаются и миофибрилла укорачивается

    Расслабление скелетной мышцы:


    Расслабление мышцы вызывается обратным переносом ионов Са++ посредством кальциевого насоса в каналы саркоплазматического ретикулума. По мере удаления Са++ из цитоплазмы открытых центров связывания становится все меньше и в конце концов актиновые и миозиновые филламенты полностью рассоединяются; наступает расслабление мышцы.

    Контрактурой называют стойкое длительное сокращение мышцы, сохраняющееся после прекращения действия раздражителя. Кратковременная контрактура может развиваться после тетанического сокращения в результате накопления в саркоплазме большого количества Са++ ; длительная (иногда необратимая) контрактура может возникать в результате отравления ядами, нарушений метаболизма.

    Фазы и режимы сокращения скелетной мышцы:


    При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы :

    •  латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

    •  фаза укорочения (около 50 мс);

    •  фаза расслабления (около 50 мс).

    Оптимум и пессимум частоты

    Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности ,в результате чего амплитуда тетануса значительно уменьшается.

    Мощность и скорость сокращения мышцы. Важными характеристиками мышцы являются сила и скорость сокращения. Уравнения, выражающие эти характеристики, были эмпирически получены А.Хиллом и впоследствии подтверждены кинетической теорией мышесного сокращения (модель Дещеревского).

    Уравнение Хилла, связывающее между собой силу и скорость сокращения мышцы, имеет следующий вид: (P+a)(v+b) = (P0+a)b = a(vmax+b), где v – скорость укорочения мышцы; P – мышечная сила или приложенная к ней нагрузка; vmax - максимальная скорость укорочения мышцы; P- сила, развиваемая мышцей в изометрическом режиме сокращения; a,b - константы. Общая мощность, развиваемая мышцей, определяется по формуле: Nобщ = (P+a)v = b(P0-P)КПД мышцы сохраняет постоянное значение (около 40%) в диапазоне значений силы от 0,2 P0 до 0,8 P0. В процессе сокращения мышцы выделяется некоторое количество теплоты. Эта величина называется теплопродукцией. Теплопродукция зависит только от изменения длины мышцы и не зависит от нагрузки. Константы и b имеют постоянные значения для данной мышцы. Константа а имеет размерность силы, а b – скорости. Константа в значительной степени зависит от температуры. Константа а находится в диапазоне значений от 0,25 Pдо 0,4 P0. По этим данным оценивается максимальная скорость сокращения для данной мышцы: vmax = b•( P/ a).

    Мышечные сокращения в стоматологии:

    Механизм возникновения тризма


    Жевательные мышцы приводят в движение наш челюстной аппарат. Внезапное мышечное сокращение, сопровождающееся сильным смыканием челюстей, ограничением движения нижней челюсти, временной утратой способности говорить и принимать пищу, и называется тризмом. Сильное сжатие зубов нередко становится причиной нарушения дыхания.

    Чрезмерное напряжение мышц приводит к их затвердению. Заболевание может стать фактором существенного снижения качества жизни, ухудшения психоэмоционального фона. Меняется внешний вид человека, страдают органы пищеварительного тракта, поэтому важно как можно раньше обратиться к врачу. Без своевременной помощи может ухудшиться общее состояние здоровья, к тому же необходимо выяснить причины спазмов

    Заключение:

    Физика и биология, на первый взгляд, довольно далекие друг от друга науки. Но это только на первый взгляд. В действительности же в этих науках есть много общих точек. Например, в анатомии, зрение. Здесь присутствует элемент оптики: лучи света преломляются в хрусталике глаза, и элемент механики: хрусталик деформируется мышцами. Хотя, говоря о мышцах, нельзя не упомянуть о том, что их работа напрямую связана с физикой. Ведь по сути дела, механизм их действия, сокращение в связи с сокращением белковых нитей, физический процесс. А обмен веществ? Ведь питательные вещества переходят из крови в межклеточное вещество, из межклеточного вещества в клетку и из клетки в межклеточное вещество в основном из-за перепада в давлении. 

    Интерес биофизики к процессам происходящим в сокращающихся мышцах основан не только на выяснении механизмов мышечных болезней, но и что может быть даже более важным – это раскрытие механизма превращения электрической энергии в механическую, минуя сложные механизмы тяг и передач.Для того, чтобы понять механизм и биофизические процессы происходящие в сокращающихся мышцах, необходимо заглянуть в строение мышечного волокна.

    Литература:

    1. «Физиология человека» в 3т. /под ред. Шмидт Р., Тевс Г., Москва: «Мир», 2004, 326 с.

    2. Биофизика, книга 1. Учебное пособие для вузов. /под ред. А.Б.Рубина. - Москва: "Высшая школа", 1987., 365 с.

    3. Антонов В. Ф., Коржуев А. В. Физика и биофизика: курс лекций для студентов медицинских вузов. – Москва: ГЭОТАР-МЕД, 2004.

    4. Материалы сайта www.wikipedia.org;

    5. Материалы сайта www.humuk.ru;

    6. Ремизов А. Н., Максина А. Г., Потапенко А. Я. Медицинская и биологическая физика. –Дрофа, 2003.

    7. Хауссер К. Х., Кальбитцер Х. Р. ЯМР в медицине и биологии:структура молекул, томография, спектроскопия in-vivo. – Киев: Наукова думка, 1993.


    написать администратору сайта