Магжан ЭТМ реферат. Диэлектрики. Электрические характеристики диэлектрических материалов
Скачать 0.49 Mb.
|
Министерство сельского хозяйства Республики Казахстан НАО «Казахский национальный аграрный исследовательский университет» Факультет «Инженерно-технический» Кафедра «Энергосбережение и автоматика» РЕФЕРАТ На тему: Диэлектрики.Электрические характеристики диэлектрических материалов. Выполнил: Жұмабай.М.Қ Проверил: Дюсенбаев Т.С. Алматы 2023 г.
Введение Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток. Плотность свободных носителей заряда в диэлектрике не превышает 108 шт/см³. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию. К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком. Рис 1.Диэлектрик Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. В электродинамике диэлектрик — среда с малым на рассматриваемой частоте значением тангенса угла диэлектрических потерь в такой среде сила тока проводимости[3] много меньше силы тока смещения.Под «идеальным диэлектриком» понимают среду со значением , прочие диэлектрики называют «реальными» или диэлектриками (средами) «с потерями». С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ. Исследование диэлектрических свойств касается хранения и рассеивания электрической и магнитной энергии в материалах[4][5]. Понятие диэлектрики важны для объяснения различных явлений в электронике, оптике, физике твердого тела и клеточной биофизике При применении диэлектриков одного из наиболее обширных классов электротехнических материалов довольно четко определилась необходимость использования как пассивных, так и активных свойств. Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от «земли»). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных ёмкостей. Если материал используется в качестве диэлектрика конденсатора определённой ёмкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость. 1.Свойства диэлектриков 1.1Физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики. При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов. Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материал используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость. Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др. Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ < 10-5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10-8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10-5—108 Ом·м. Наряду с электрическими материалами спрос на диэлектрические материалы растёт день за днём. Это связано с увеличением мощности государственных промышленных предприятий, частных предприятий и с ростом государственных и негосударственных общественных организаций и учреждений. Большой спрос на диэлектрические материалы, также, связан с увеличением количества разнообразных электроприборов и средств связи [1-3]. В технике используют различные виды диэлектриков, которые изготавливаются в процессе переработки природных ресурсов и химических материалов. Применяемые в народном хозяйстве диэлектрические материалы условно можно классифицировать в виде, показанном на рис. Как известно, диэлектрические свойства материалов определяются расположением атомов и молекул в кристаллической решетке. Химические элементы, входящие в состав материала, а также структура, симметрия и степень упорядоченности кристаллической решетки, определяют как диэлектрические свойства материалов, так и их зависимость от внешних факторов, включая температуру. Водонепроницаемость - твердые диэлектрики могут мешать проникновению влаги внутрь. Благодаря этому свойству их часто используют для уличного оборудования. Причем это относится не только к воде, но и прочим жидкостям, например, напиткам, сокам, молоку и так далее. Теплозащита-Диэлектрики отлично переносят сильные температуры. Например, не зря их использую в космосе, где полоска термометра бывает ниже -90°C. Именно поэтому диэлектрики – отличный помощник в сильные морозы и жаркие дни. Сдерживаемость радиации-Диэлектрики не пропускают радиацию, щелочи и кислотные вещества. Это очень важно, при возникновении утечки на станциях и заводах, где есть опасные химические элементы. Изоляторы, без какого-либо преувеличения, могут спасти тысячи людей от смерти. Поляризация-Удивительное свойство, которое присутствует исключительно у диэлектриков. Благодаря ему неприводимые материалы могут притягиваться к проводимым и тем самым создавать целую цепь. Это свойство используется повсеместно, почти во всех технологиях и машинах. Ослабление внешнего поля-Диэлектрики помогают сделать внешнее давление более слабым и тем самым безопасным. Они контролируют поле и помогают его использовать в различных целях. Очень важное свойство, позволяющее сделать работу более безопасной. У диэлектриков есть большое количество способов применения. Например, жидкие непереводные вещи используются в создании разных видов масел, которые применяются в транспортных средствах, помогают укрепить промышленные детали и сделать электроизоляцию. Газовые диэлектрики – это азот. Его применение очень широко. Многие используют азот для охлаждения промышленных приспособлений или химических смесей, а во многих печках он помогает избежать сильной газовой протечки, а также часто применяется в высокоточных переключателях. Их можно встретить в каждом доме, в котором присутствуют какие-либо газовые приборы. Огромное спектр применения у твердых диэлектриков. Например, они применяются в проводах, электронных машинах, на станциях и так далее. Эти компоненты используются даже в космосе для поддержки кораблей. Твердые диэлектрики более практичные и многофункциональные, чем прочие агрегатные компоненты, вследствие этого их можно встретить намного чаще. Диэлектрики есть везде, даже в вашем доме. Посмотрите на свои провода, электронные приборы и считок. Везде есть диэлектрики, которые позволяют приостановить продвижения тока и тем самым ограничить его воздействие на людей. Это очень важный компонент, без которого не смогло бы существовать половина приборов и машин. 1.2Классификация диэлектрических материалов В зависимости от указанных факторов, каждый отдельно взятый диэлектрический материал может по-разному проявлять свои изоляционные свойства, определяющие область его применения. Отметим, что в настоящее время отсутствует единый подход в оценке диэлектрических материалов. В данной работе систематизированы сведения о существующих диэлектрических материалах, проанализированы их преимущества и недостатки. Составлена структурная схема, в которой представлена классификация диэлектрических материалов. Схема строилась на основе разделения всего множества диэлектрических материалов по специфическим особенностям способов их переработки и изготовления (рисунок.2). Если остановиться на совокупности диэлектрических материалов, приведённых на рис., то можно отметить следующее. В народном хозяйстве широко используются диэлектрические материалы, состоящие из органических и неорганических элементов. В науке неорганические химические материалы известны как соединения углерода с другими элементами. Поскольку углерод обладает повышенной способностью образования химических соединений, то его роль можно заметить в создании веществ с цепочечными или разветвлёнными молекулами, которые могут образовываться только из атомов углерода или из атомов углерода, между которыми расположены атомы других элементов. К органическим диэлектрическим материалам можно отнести: Электроизоляционные материалы – пассивные диэлектрики, подразделяются по их агрегатному состоянию на газообразные, жидкие и твердые. В особую группу могут быть выделены твердеющие материалы, которые в исходном состоянии, во время введения их в изготовляемую изоляцию, являются жидкостями, но затем отверждаются и в готовой, находящейся в эксплуатации изоляции, представляют собой твердые тела (например лаки и компаунды) Назначение электрической изоляции – не допускать прохождения электрического тока по каким-либо нежелательным путям, помимо тех путей, которые, предусмотрены электрической схемой устройства. Очевидно, что никакое, даже самое простое, электрическое устройство не может быть выполнено без использования электроизоляционных материалов. Кроме того, электроизоляционные материалы используются в качестве, диэлектриков в электрических конденсаторах для создания определенного значения электрической емкости конденсатора, а в некоторых случаях для обеспечения определенного вида зависимости этой емкости от температуры или иных факторов. Наконец, к диэлектрическим материалам принадлежат и активные диэлектрики, т.е. диэлектрики с управляемыми свойствами (сегнетоэлектрики, пьезоэлектрики, электреты и др.) В различных случаях применения к электроизоляционным материалам предъявляются самые разнообразные требования. Помимо электроизоляционных свойств, которые были рассмотрены в начале настоящего учебного пособия, большую роль играют механические, тепловые и другие физико-химические свойства, способность материалов подвергаться тем или иным видам обработки при изготовлении из них необходимых изделий, а также их стоимость и дефицитность. Поэтому для различных случаев применения выбирают разные материалы, с соответствующими физико-механическими и электрофизическими свойствами. Рис 2.Классификация диэлектрических материалов С развитием электротехнической промышленности параллельно развивалось изготовление диэлектрических материалов из минералов. Технология изготовления минеральных диэлектриков и их разновидностей, настолько усовершенствована, что эти диэлектрические материалы из-за дешевизны и высоких диэлектрических показателей начали оттеснять натуральные и химические диэлектрические материалы. К минеральным диэлектрическим материалам можно отнести: 1) стекло (конденсаторные, установочные, ламповые, щелочные, безщелочные и другие стекла.) - аморфное вещество, которое представляет собой сложную систему различных окислов. Из-за того, что в состав стекла входят такие окислы, как SiO2, CaO, Al2O3 и т.д., диэлектрические свойства стекла заметно улучшаются; 2)стеклоэмаль - это материал, который наносится тонким слоем на поверхность металлических и других предметов с целью защиты их от коррозии; 3)стекловолокно - стеклянные нити, из которых впоследствии ткут стеклянные ткани; 4)световоды - светопроводящий вид стекловолокна, т.е. жгут, скрученный из волокон, имеющих сердцевину и оболочку из стёкол разного состава; 5) ситаллы - кристаллы, в состав которых входят силикаты; 6) керамические материалы (фарфор, стеатит); 7) слюда (миканиты, слюдопласты, микалекс); 8) асбест (асбоцемент) - название группы минералов, обладающих волокнистым строением, представляющие собой волокнистую разновидность минерала хризотила - 3MgO*2SiO2*2H3O. Из представленного краткого обзора диэлектрических материалов можно увидеть их разнообразие. Следует отметить, что, несмотря на такое большое разнообразие существующих диэлектрических материалов, они не всегда могут заменить друг друга. Во многих случаях область использования диэлектрических материалов в основном зависит от их дешевизны, удобства использования, физико-механических и других второстепенных свойств. В некоторых случаях, к применяемым электроизоляционным материалам предъявляются самые разнообразные требования. . Помимо электроизоляционных свойств, большую роль играют механические, тепловые и другие физико-химические свойства, включая способность материалов подвергаться тем или иным видам обработки при изготовлении из них необходимых изделий, а также стоимость и дефицитность материалов. Поэтому, для различных случаев применения выбирают разные материалы. Под органическими веществами подразумеваются соединения углерода; обычно они содержат также водород, кислород, азот, галогены или иные элементы. Прочие вещества считаются неорганическими; многие из них содержат кремний, алюминий и другие металлы, кислород и т.п. Многие органические электроизоляционные материалы обладают ценными механическими свойствами, гибкостью, эластичностью, из них могут быть изготовлены волокна, пленки и изделия других разнообразных форм, поэтому они нашли весьма широкое применение. Однако органические электроизоляционные материалы за немногими исключениями (фторлоны, полиимиды и пр.) имеют относительно низкую нагревостойкость. Неорганические электроизоляционные материалы в большинстве случаев не обладают гибкостью и эластичностью, часто они хрупки; технология их обработки сравнительно сложна. Однако, как правило, неорганические электроизоляционные материалы обладают значительно более высокой нагревостойкостью чем органические, а потому они с успехом применяются в тех случаях, когда требуется обеспечить высокую рабочую температуру изоляции. Существуют и материалы со свойствами, промежуточными между свойствами органических и неорганических материалов: это элементоорганические материалы, в молекулы которых, помимо атомов углерода, входят атомы других элементов, обычно не входящих в состав органических веществ и более характерных для неорганических материалов: Si, Al, Р и др. Поскольку значение длительно допускаемой рабочей температуры электрической изоляции часто играет первостепенную роль на практике электроизоляционные материалы и их комбинации (электроизоляционные системы электрических машин, аппаратов и др.) часто относят к тем или иным классам нагревостойкости. Необходимо иметь в виду, что электроизоляционные, механические, тепловые, влажностные и другие свойства диэлектриков заметно изменяются в зависимости от технологии получения и обработки материалов, наличия примесей, условий испытания и т.д. Достаточно подробная классификация диэлектрических материалов приведена на (рис.3). Основные характеристики и область применения тех или иных диэлектриков достаточно подробно изложены в соответствующей справочной литературе и в виду ограниченности объема в данном пособии не приводятся. Рис 3 Классификация диэлектрических материалов (ПОСЖ – полиоргсилоксановые жидкости; ФОСЖ – фторорганические жидкости; ХФОСЖ – хлорфторорганические жидкости) 2.Виды жидких диэлектриков 2.1Нефтяные электроизоляционные масла. Трансформаторное масло, которым заливают силовые трансформаторы, из всех жидких электроизоляционных материалов находит наибольшее применение в электротехнике. Его назначение двояко : во-первых, масло, заполняя поры в волокнистой изоляции, а также промежутки между проводами обмоток и между обмотками и баком трансформатора, значительно повышает электрическую прочность изоляции; во-вторых, оно улучшает отвод теплоты, выделяемой за счёт потерь в обмотках и сердечнике трансформатора. Лишь некоторые силовые и измерительные трансформаторы выполняются без заливки маслом ( “ сухие трансформаторы ” ). Ещё одна важная область применения трансформаторного масла - масляные выключатели высокого напряжения. В этих аппаратах разрыв электрической дуги между расходящимися контактами выключателя происходит в масле или в находящихся под повышенным давлением газах, выделяемых маслом под действием высокой температуры дуги; это способствует охлаждению канала дуги и быстрому её гашению. Трансформаторное масло применяется также для заливки маслонаполненных вводов, некоторых типов реакторов, реостатов и других электрических аппаратов. Трансформаторные, а также другие нефтяные (“минеральные ”) электроизоляционные масла получают из нефти посредством её ступенчатой перегонки с выделением на каждой ступени определённой ( по температуре кипения ) фракции и последующей тщательной очистки от химических нестойких примесей в результате обработки серной кислотой, а затем щёлочью, промывки водой и сушки (рисунок.4). Рис 4.Трансформаторное масло Трансформаторное масло - это жидкость от почти бесцветной до тёмно - жёлтого цвета, по химическому составу представляющая собой смесь различных углеводородов. Трансформаторное масло - горючая жидкость. Электрическая прочность масла - величина, чрезвычайно чувствительная к его увлажнению. Незначительная примесь воды в масле резко снижает его электрическую прочность. Это объясняется тем, что воды ( около 80 ) значительно выше, чем масла (чистого масла около 2,2 )(рисунок 5). Под действием сил электрического поля капельки эмульгированной в масле воды втягиваются в места, где напряжённость электрического поля особенно велика и где, собственно и начинается развитие пробоя. Ещё более резко понижается электрическая прочность масла, если в нём, кроме воды содержатся волокнистые примеси. Волокна бумаги, хлопчатобумажной пряжи, легко впитывают в себя влагу из масла, причём значительно возрастает их r. Под действием сил поля увлажнённые волокна не только втягиваются в места, где поле сильнее, но и располагаются по направлению силовых линий, что весьма облегчает пробой масла. Рис 5 Характеристики жидких диэлектриков Кабельные масла используются в производстве силовых электрических кабелей; Пропитывая бумажную изоляцию этих кабелей, они повышают её электрическую прочность, а также способствуют отводу теплоты потерь. Кабельные масла бывают различных типов. Для пропитки изоляции силовых кабелей на рабочие напряжения до 35 кВ в свинцовых или алюминиевых оболочках ( кабели с вязкой пропиткой ) применяется масло марки КМ-25 с кинематической вязкостью не менее 23 мм2/c при 1000С, температурой застывания не выше минус 100С и температурой вспышки не ниже +2200С. Для увеличения вязкости к этому маслу дополнительно добавляется канифоль или же синтетический загуститель. В маслонаполненных кабелях используются менее вязкие масла. Так, масло марки МН-4 применяется для маслонаполненных кабелей на напряжения 110-220 кВ, в которых во время эксплуатации с помощью подпитывающих устройств поддерживается избыточное давление 0,3 - 0,4 МПа. Для маслонаполненных кабелей высокого давления ( до 1,5 МПа ) на напряжения от 110-500 кВ, прокладываемых в стальных трубах, применяется особо тщательно очищенное масло марки С-200. 2.2Синтетические жидкие диэлектрики. Нефтяные масла склонны к электрическому старению, т.е. они могут ухудшать свои свойства под действием электрического поля высокой напряжённости. Для пропитки конденсаторов с целью получения повышенной ёмкости в данных габаритных размерах конденсатора желательно иметь полярный жидкий диэлектрик с более высоким, чем у неполярных нефтяных масел, значением r имеются синтетические жидкие диэлектрики, по тем или иным свойствам превосходящие нефтяные электроизоляционные масла. Рассмотрим важнейшие из них. Хлорированные углеводороды получаются из различных углеводородов путём замены в их молекулах некоторых ( или даже всех ) атомов водорода атомами хлора. Наиболее широкое применение имеют полярные продукты хлорирования дифенила, имеющие общий состав С12Н10-nCLn (n - степень хлорирования от 3 до 6). Хлорированные дифенилы обладают r , повышенной по сравнению с неполярными нефтяными маслами. По этому замена масел на хлорированные дифенилы при пропитке конденсаторов уменьшает объём конденсатора ( при этой же электрической ёмкости ) почти в 2 раза. Преимуществом хлорированных дифенилов является его не горючесть. Однако хлорированные дифенилы имеют и свои недостатки. Они сильно токсичны, из-за чего применение их для пропитки конденсаторов в некоторых странах запрещено законом. На их электроизоляционные свойства весьма значительно влияют примеси, наличие которых сказывается на потерях сквозной электропроводности при повышенной температуре. Недостатком является также заметное снижение их r и, следовательно ёмкости пропитанных хлорированными дифенилами конденсаторов при пониженных температурах. Хлорированные дифенилы обладают сравнительно высокой вязкостью, что в некоторых случаях вызывает необходимость разбавления их менее вязкими хлорированными углеводородами. Кремнийорганические жидкости обладают малым tg , низкой гигроскопичностью и повышенной нагревостойкостью. Для них характерна слабовыраженная зависимость вязкости от температуры. Эти жидкости весьма дорогие. Фтороорганические жидкости имеют малый tg ,ничтожно малую гигроскопичность и высокую нагревостойкость. Некоторые фтороорганические жидкости могут длительно работать при температуре 2000С и выше. Пары некоторых фтороорганических жидкостей имеют высокую для газообразных диэлектриков электрическую прочность. Сравнительно дешёвый отечественный материал (октол) представляет собой смесь полимеров изобутилена и его изомеров, имеющих общий состав С4Н8 и получаемых из газообразных продуктов крекинга нефти. Значение r октола 2,0 - 2,2; tg ( при 1кГц ) 0,0001; температура застывания минус 120С. 2.3Природные смолы. Канифоль - хрупкая смола, получаемая из живицы ( природной смолы сосны ) после отгонки её жидких составных частей ( скипидара ). Канифоль в основном состоит из органических кислот. Канифоль растворима в нефтяных маслах ( особенно при нагреве) и других углеводородов, растительных маслах, спирте, скипидаре и прочие (рисунок 3). Электроизоляционные свойства канифоли : =1012- 1013 Ом м; ЕПР= 10 - 15 МВ/м; зависимость r и tg от температуры характерна для полярных диэлектриков. Температура размягчения канифоли составляет 50 - 700С. На воздухе канифоль постепенно окисляется, при чём температура размягчения её повышается, а растворимость снижается. Канифоль, растворённая в нефтяных маслах, применяется при изготовлении пропиточных и заливочных кабельных компаундов. Рис 3.Канифольная смола 2.4Растительные масла. Растительные масла - вязкие жидкости, получаемые из семян различных растений. Из этих масел особенно важны высыхающие масла, способные под воздействием нагрева, освещения, соприкосновения с кислородом воздуха и других факторов переходить в твёрдое состояние. Тонкий слой масла, налитый на поверхность какого-либо материала, высыхает и образует твёрдую, блестящую, прочно пристающую к подложке электроизоляционную плёнку. Высыхание масел является сложным химическим процессом, связанным с поглощением маслом некоторого количества кислорода из воздуха. Скорость высыхания масел увеличивается с повышением температуры, при освещении, а также в присутствии катализаторов химических реакций высыхания - сиккативов. В качестве сиккативов используют соединения свинца, кальция, кобальта и др. Отверждённые плёнки высыхающих масел в тяжёлых углеводородах, например в трансформаторном масле, не растворяются даже при нагреве, так что являются практически маслостойкими, но к ароматическим углеводородам, например бензолу, они менее стойки. При нагреве отверждённая плёнка не размягчается. Наиболее распространённые высыхающие масла - льняное и тунговое. Льняное масло золотисто - жёлтого цвета получается из семян льна. Его плотность 0,93-0,94 Мг/м3, температура застывания - около -200С. Тунговое (древесное) масло получают из семян тунгового дерева, которое разводится на Дальнем Востоке и на Кавказе. Тунговое масло не является пищевым и даже токсично. Плотность тунгового масла - 94 МГ/м3 , температура застывания - от 0 до минус 50С. По сравнению с льняным маслом тунговое высыхает быстрее. Оно даже в толстом слое высыхает более равномерно и даёт водонепроницаемую плёнку, чем льняное. Высыхающие масла применяются в электропромышленности для изготовления электроизоляционных масляных лаков, лакотканей, для пропитки дерева и для других целей. В последнее время наблюдается тенденция к замене высыхающих масел синтетическими материалами. Невысыхающие масла могут применяться в качестве жидких диэлектриков. Касторовое масло получается из семян клещевины; иногда используется для пропитки бумажных конденсаторов. Плотность касторового масла 0,95-0,97 МГ/м3, температура застывания от минус 10 до минус 180С ; r равно 4,0 - 4,5 при температуре 200С; tg 0,01 - 0,03, ЕПР=15-20 МВ/м. Касторовое масло не растворяется в бензине, но растворяется в этиловом спирте. Заключение B настоящее время прогресс электроники во всевозрастающей степени определяется особыми свойствами используемых материалов. Здесь широко используются особые своЙства днэлектриков: линейные и нелинейные диэлектрические, пьезо, пиро и сегнетоэлектрические,электро иакустооптические, нелинейно-оптические, лазерно генерационные. Дизлектрики находят широкое использование в качестве преобразователей электрических, оптических, механических и тепловых воздействий. Сегодня особую актуальность пробретает разработка новых типов диэлектриков с заданными свойствами для реализации их в новых приборах, устройствах и системах Перспективы применения диэлектриков в самых различных областях прикладной науки и техники - огромны.В проводннках в отличие от диэлектриков, высокая концентрация свободных электрических зарядов. В метаплах таковыми являются свободные электроны, которые способны передвигаться по всему обьёму вещества. Возникновение свободных электронов обусловлено тем, что валентные электроны в атомах метаплов весьма плохо взаимодействуют с ядрами и легко теряют связь с ними.У диэлектриков, напротив, электроны с атомами крепко связаны и не имеют возможности свободно перемещаться под воздействием электрического поля. И так как количество свободных заряженных носителей в диэлектриках ничтожно мало, из этого следует, что в них отсутствует электростатическая индукция, и напряжённость электрического поля внутри диэлектриков не превращается в ноль, а только уменьшается.. Список используемой литературы Тамм И.Е. “Основы теории электричества”, Москва, издательство “Наука”, главная редакция физико-математической литературы, 1976 г. Сивухин Д.В. “Общий курс физики. Том 3, электричество”, Москва, издательство “Наука”, главная редакция физико-математической литературы, 1977 г. Ландау Л.Д., Лифшиц Е.М. “Электродинамика сплошных сред”, Москва, Государственное издательство физико-математической литературы, 1959 г. Н.П. Богородицкий и др. Электротехнические материалы. Издательство <Энергия>, Л., 1977 г. А.С. Зеличенко и др. Устройство и ремонт воздушных линий электропередачи и высоковольтных вводов. Издательство <Высшая школа>, М., 1985 г. В.В. Бозуткин и др. Техника высоких напряжений. Издательство <Энергоатомиздат>, М., 1986 г. |