Главная страница
Навигация по странице:

  • Давление и температура

  • V.1. Единицы измерения давления.

  • Пьезометрический уровень

  • пластовые давления (АВПД и АНПД)

  • Вторичное сокращение объема пор в коллекторах при кристаллизации цемента

  • главными из них являются замкнутая линзовидная форма резервуара, ее запечатанность со всех сторон непроницаемыми породами.

  • Давление и температура в залежах

  • доклад температура и давление. доклад давление и темп. Геология нефти и газа 16. Давление и температура в залежах нефти и газа


    Скачать 71.5 Kb.
    НазваниеГеология нефти и газа 16. Давление и температура в залежах нефти и газа
    Анкордоклад температура и давление
    Дата16.03.2023
    Размер71.5 Kb.
    Формат файлаdoc
    Имя файладоклад давление и темп.doc
    ТипДокументы
    #993965

    ГЕОЛОГИЯ НЕФТИ И ГАЗА

    16. ДАВЛЕНИЕ И ТЕМПЕРАТУРА В ЗАЛЕЖАХ НЕФТИ И ГАЗА

    Давление и температура являются наиболее важными характеристиками залежей нефти и газа, во многом определяющими условия разработки месторождений. Изменение одного из этих параметров неизбежно приводит к изменению другого. Изменения этих параметров сказывается на параметрах залежей (изменение объемов флюидов, находящихся в залежи, изменение соотношения газовой и жидкой фаз в залежи).

    Флюиды, содержащиеся в породах-коллекторах, находятся под определенным давлением (силой, с которой флюид давит на стенки пор в коллекторе), которое называется пластовым давлением.

    Механизм формирования пластового давления сложен и определяется в самом общем виде сочетанием двух факторов - геостатического и гидростатического.

    Осадочные породы в естественном залегании находятся в сложнонапряженном состоянии, определяемом весом вышележащих пород геостатическое давление), интенсивностью и длительностью тектонических движений (боковое давление) и механическими свойствами самих пород.

    Величина геостатического давления определяется мощностью и плотностью пород в точке измерения:

    Pгео.=(Нх2,3)/10=0.23H,

    где Н - мощность пород в точке измерения, в м., - 2.3 - средняя плотность осадочных пород.

    Гидростатическое давление создается весом воды, заключенной в пласте-коллекторе или системе пластов-коллекторов. При сообщении пласта с дневной поверхностью величина пластового давления определяется весом столба воды от точки измерения до дневной поверхности. Такое давление принято называть гидростатическим:

    Ргид. = (Н ɣ),

    где Н- высота водяного столба, в м. ; ɣ - плотность воды.

    Независимо от причин, определяющих пластовое давление, его величина на глубинах до 2.0 - 2.5 км чаще всего может быть определена высотой столба жидкости с учётом ее удельного веса. При вскрытии пласта в скважине высота столба жидкости уравновешивает пластовое давление в пласте. В резервуарах, имеющих сообщение с земной поверхностью, пластовое давление в статических условиях (без движения вод хотя этот допуск условен в геологическом масштабе времени) определяется уровнем зеркала воды в резервуаре в области его связи с земной поверхностью (имеется ввиду непосредственный выход пласта на поверхность, связь через зоны разломов или карстовые системы).

    Если в пласте по тем или иным причинам происходят изменения пластового давления, то они неизбежно отразятся на положении свободного зеркала воды данного резервуара. В любой скважине, вскрывшей этот пласт, уровень столба жидкости окажется на одном уровне. Поверхность, проведенная через эти отметки, называется пьезометрической. При упрощенном расчете ожидаемого давления в пласте удельный вес воды принимается за единицу. В этом случае давление определяется по формуле Р = Н/10.

    Водоносные системы в земной коре имеющие связь с поверхностью, напор в которых создается за счет инфильтрации атмосферных и поверхностных вод в породы-коллекторы и за счет образуемой этими водами гидростатической нагрузки, называются инфильтрационными водонапорными системами (по А.А.Карцеву).

    Давление и температура относятся к числу основных параметров залежей нефти и газа. Поэтому при поисково-разведочных работах уделяется внимание не только их определению в скважинах, но в значительной мере их прогнозу на тех или иных глубинах, в тех или иных районах и областях.

    По замерам этих параметров в скважинах составляются региональные или порайонные карты изобар (изолиний давлений), карты изотерм, являющихся основой расчетов и прогнозов давлений и температур на малоизученных глубинах и территориях.

    V.1. Единицы измерения давления.

    1. Атмосфера – атм., давление атмосферного слоя Земли.

    1 атм=760 мм. ртутного столба при температуре 0°С.

    2. Техническая атмосфера – ат. 1 ат=106 дин/см2.

    1 ат=1 кгс/см2 – давление силы 1 кг На 1 см2.

    1 ат=0,968 атм.

    3. Бар. 1 бар=1 ат.

    4. В системе СИ давление измеряется в паскалях – па.

    1 па=1н/м2 – давление силы 1 ньютон на 1 м2. 1 ньютон (н) – сила, сообщающая телу массой 1 кг ускорение 1 м/с2

    мпа – миллипаскаль. 1 мпа=10-3па

    Мпа – мегапаскаль. 1Мпа=106па

    Пересчет атмосфер в мегапаскали производится по соотношению: 1 ат=100000 па 10ат=1Мпа.

    V.2. Виды давлений

    1. Горное (геостатическое) давление – это давление вышележащих горных пород. Оно прямо пропорционально глубине залегания в метрах и плотности вышележащих пород:

    , где 2,3 – средняя плотность горных пород в верхней зоне земной коры, в г/см3. 10 – поправочный коэффициент для расчета давления в атмосферах. При расчетах давления в Мпа поправочный коэффициент принимается равным 100.

    2. Гидростатическое давление – давление вышележащих подземных вод, находящихся в порах и трещинах горных пород. Оно прямо пропорционально глубине залегания в метрах и плотности подземных вод, которая в среднем равна 1,05 г/см3.

    3. Гидродинамическое давление – давление движущихся подземных вод.

    4. Пластовое давление – давление внутри залежи нефти и газа. Оно равно давлению вышележащих подземных вод и по закону Паскаля передается на всю залежь через ВНК. Рассчитывается по формуле:

    , где Н – глубина в метрах (м) на уровне ВНК, 10 – поправочный коэффициент для расчета давления в ат – это теоретически расчетное давление. Фактическое пластовое давление определяется по замерам в скважинах приборами при испытании пластов. Оно может значительно отличаться от расчетного пластового давления.

    5. Избыточное давление – дополнительное давление в залежи, возникающее за счет силы всплывания нефти над водой. Рассчитывается по формуле:

    , где h – высота точки расчета над ВНК, (dB-dH) – разность плотностей воды и нефти.

    6. Давление насыщения – это давление газа, растворенного в нефти. Зависит от степени газонасыщенности нефти.

    При вскрытии пласта скважиной в ней устанавливается столб жидкости высотой, уравновешивающей пластовое давление. Если в пласте существует застойный водный режим, то во всех скважинах устанавливается одинаковый уровень жидкости. Если же подземные воды испытывают направленное боковое движение, то давление в жидкости будет равно сумме гидростатического и гидродинамического давлений. При этом уровни столбов жидкости будут ниже в тех скважинах, в сторону которых направлено боковое движение подземных вод. Пьезометрический уровень в таких системах будет иметь наклонное положение. Пьезометрическая поверхность определяется для каждого пласта отдельно как поверхность, выше которой вода в скважине не поднимается. В резервуарах с наклонной пьезометрической поверхностью ВНК и ГВК приобретают наклонное положение (рис.6).

    Гидростатический градиент в среднем равен 1 атмосфере на 10 метров глубины.

    рис.6 Коллекторские пласты с гидродинамическим режимом. Составил Е.М.Максимов.

    Приведенное давление в точке А равно: .

    Наклон ВНК определяется разностью приведенных давлений в точках А и Б: , где ρВ – плотность пластовой воды; ρГ – плотность газа. Условные обозначения: 1 – песок водоносный; 2 – залежь газа с наклонным газо-водяным контактом; 3 – направление движения воды по пласту.

    .3. Аномально высокие и аномально низкие пластовые давления (АВПД и АНПД)

    Как отмечалось выше, при нормальных условиях пластовое давление в каждой точке залежи нефти и газа равно гидростатическому давлению, замеренному на уровне ВНК, плюс избыточное давление. В природных условиях существует много залежей, особенно на больших глубинах, имеющих пластовое давление, значительно превосходящее расчетное гидростатическое. Возникновение аномально высокого пластового давления объясняется следующими причинами:

    1. Передачей части горного давления на залежь. Если скелет породы слабый, то часть горного давления передается на жидкость или газ, находящиеся в ее порах. К таким породам со слабым скелетом, в частности, относятся глины. Поэтому в изолированных линзовидных, карманообразных резервуарах, находящихся внутри глинистых толщ, возникают аномальные давления, превышающие нормальное гидростатическое давление.

    2. Кратковременное повышение пластового давления возникает при землетрясениях. Наблюдения показывают, что в сейсмически активных областях перед землетрясением повышаются дебиты нефти в скважинах.

    3. Тектонические движения по разломам. В приподнятом блоке залежи, разорванной разломами, в течении длительного времени будет сохраняться прежнее высокое пластовое давление, характерное до ее воздымания.

    4. Вторичное увеличение объема залежи в зонах высоких температур. В зоне больших глубин и высоких температур сложные углеводородные соединения с длинными цепями разрушаются с образованием большого количества простых молекул. Увеличение числа молекул приводит к увеличению объема. Увеличение объема залежи приводит к возрастанию давления внутри замкнутого резервуара. По этой причине в газоконденсатных залежах, образующихся за счет разрушения газонефтяной залежи, часто наблюдается АВПД.

    5. Вторичное сокращение объема пор в коллекторах при кристаллизации цемента в законтурных частях резервуара. Залежь при этом приобретает замкнутый и полузамкнутый характер.

    6. Таким образом, аномально высокое пластовое давление возникает под действием разных причин, но главными из них являются замкнутая линзовидная форма резервуара, ее запечатанность со всех сторон непроницаемыми породами.

    В недрах Земли существуют также залежи, имеющие аномально низкое пластовое давление. Появление его может быть обусловлено вторичным увеличением объема резервуара ввиду возникновения вторичной трещиноватости. Пониженные давления возникают и при повторном опускании залежей. При этом восстановление нового пластового давления происходит не сразу, и в течении длительного геологического времени в залежи будет сохранятся низкое пластовое давление, существовавшее до ее опускания.

    Давление и температура в залежах

    В разрабатываемых залежах известна температура от близкой к нулю в газогидратных залежах до первых сотен градусов в глубоко залегающих пластах. Так, например, в скв. 1 Беневук (Техас, США) тем­пература на глубине 7266 м достигает 291 0С.

    Температура в залежах зависит от глубины их залегания и геотер­мических особенностей соответствующего участка земной коры. Наибо­лее характерными показателями температурной обстановки в недрах яв­ляются геотермическая ступень и геотермический градиент. Изменение температуры в залежах оказывает существенное влияние на содержащиеся в них нефть и газ. Так, повышение температуры вызы­вает снижение вязкости нефти и воды и увеличение вязкости газов. Изменение температуры пласта ведет к изменению объема газа, воды и породы. При увеличении температуры в изолированном резервуаре повы­шается давление. Значительный рост температуры может привести к суще­ственной перестройке углеводородных молекул. С изменением темпера­туры связано изменение соотношения фаз в залежи и растворимости газов в нефти и воде. С повышением температуры, как правило, увеличивается растворимость солей в воде и растет минерализация вод. С ро­стом минерализации уменьшается растворимость газов в воде.

    Давление в залежи, или пластовое давление, представляет собой дав­ление, которое флюиды оказывают на вмещающие их породы. Давление в залежи на контакте с водой предопределяется гидростатическим давле­нием в резервуаре на данном уровне.

    В залежи вследствие наличия разницы между плотностями находя­щихся в них флюидов возникает избыточное давление Dри, пред­ставляющее собой разницу между давлением в точке измерения внутри залежи УВ и тем давлением, которое наблюдалось бы в этой точке в слу­чае отсутствия скопления УВ и заполнения всей ловушки пластовой во­дой: Dри =р3 - рг, где рз — давление, измеренное в залежи; рггидро­статическое давление, соответствующее высоте точки замера в залежи. Избыточное давление в любой точке нефтяной или газовой залежи определяется по формуле Dри = h(rв—rн.г), где h — высота точки опре­деления в нефтяной или газовой залежи над поверхностью раздела с во­дой; (rв—rн.г) — разница плотностей воды и нефти или газа.

    Избыточное давление в любой точке газовой шапки рассчитывают по уравнению Dри = hн (rв—rн)+ hг (rв—rг), где hн — высота нефтяной части залежи; hг — высота точки определения над разделом газ — нефть. По формуле возможно определение положения разделов газ — нефть, нефть — вода или газ — вода в пространстве по замерам давления в одной сква­жине, пробуренной на залежь, при условии, что известно положение пьезометрической поверхности в резервуаре.

    Энергетическое состояние залежи также в значительной степени обус­ловлено ее температурным режимом и пластовым давлением. Говоря об энергии залежей, следует различать свободную химическую и потенциаль­ную энергию. Запасы свободной химической энергии (основной объект добычи) определяются количеством УВ и их химическим составом — од­нако энергия, как правило, не используется при разработке. Находящиеся в резервуаре вода, нефть и газ образуют энергетическую систему. Обычно (но далеко не всегда) основной запас потенциальной энергии такой си­стемы определяется энергией воды.[4]

    Изменение пластовых давления и температуры в процессе разработки залежи.

    Разработка залежей, сопровождающаяся изменением давления (иногда и температуры), нарушает термодинамические равновесия подземных флюидов и приводит к существенному изменению состава и свойств добываемых нефти и газа.

    Для нефтяных залежей снижение пластового давления ниже давления насыщения нефти газом вызывает снижение газосодержания пластовой нефти. Вследствие этого увеличиваются ее вязкость и плотность, уменьша­ется объемный коэффициент. Однако процессы подземной дегазации практи­чески не отражаются на свойствах добываемой нефти, но приводят к изме­нению состава попутно добываемого газа. В соответствии с особенностями растворимости газов в нефти при снижении пластового давления в залежи первыми переходят в свободную газовую фазу наименее растворимые азот и метан, затем при еще большем снижении давления освобождаются этан, пропан, бутан и др., а в конечной стадии дегазации — углекислота и серово­дород. В соответствии с этим попутные газы могут резко изменить свои со­став в процессе разработки на режиме истощения. Увеличение содержания СО2 в составе попутного газа может быть вызнано его выделением не только из нефти в результате снижения пластового давления, но и из водорастворенного газа. Рост содержания СО2 за счет его выделения из пластовых вод проявляется при сильном обводнении продукции на заключительной стадии разработки.[5]

    В нефтяных залежах с газовой шапкой, содержащей много газоконден­сата, при снижении давления конденсат выпадает в жидкую фазу и смеши­вается с нефтью, в результате чего добываемая жидкая продукция характе­ризуется постепенным уменьшением плотности и увеличением выхода свет­лых фракций.

    Для месторождений, нефти которых содержат большое количество пара­фина, выделение растворенного газа вследствие снижения пластового давле­ния и снижение пластовой температуры вследствие закачки холодной воды могут привести к выделению парафина из растворенного состояния в сво­бодную твердую фазу. Результат этого процесса — уменьшение содержания парафина в добываемой нефти и снижение ее плотности. Однако кристалли­зация парафина в пласте крайне нежелательна для разработки нефтяных месторождений, поскольку выпавшие кристаллы парафина резко ухудшают условия фильтрации нефти и приводят к снижению коэффициента нефтеотдачи. Для рациональной разработки таких месторождений необходимо ис­следовать распределение парафина в нефтях и условия его кристаллизации при изменении термобарических условий.

    Тепловая обработка забоев скважин и тепловые методы воздействия на нефтяные пласты с парафинистой нефтью обычно приводят к увеличению со­держания парафина в добываемой продукции. Пар и горячая вода способ­ствуют выносу из пласта парафина с повышенной температурой плавления. При разработке чисто газовых залежей обычно не наблюдается сколько-нибудь существенных изменений содержания основных компонентой газа. Только на заключительных стадиях отбора газа при резко сниженном пла­стовом давлении состав газа несколько обогащается компонентами, ранее на­ходившимися в растворенном состоянии в погребенной и пластовой водах, например двуокисью углерода и севодородом. В связи с высокой раствори­мостью этих газов в воде их общее количество в погребенной воде может превышать запасы в свободной фазе и при большом снижении пластового давления выделение этих газов из воды приводит к заметному возрастанию их содержания в составе добываемого газа. В частности, содержание серо­водорода к концу разработки некоторых газовых залежей увеличилось в 2 - 4 раза. Для прогноза столь существенных изменений состава газа необходимо подсчитать начальные запасы этих компонентов как в свободном газе, так и в водорастворенном и знать изменения их растворимостей в зависимости от падения пластового давления. Следует также учитывать, что в пустотном пространстве коллекторов многих газовых залежей содержится помимо по­гребенной воды связанная нефть, в которой кислые компоненты газов (СО2 и H2S) также хорошо растворяются. Поэтому связанная нефть газовых за­лежей может быть дополнительным источником обогащения газов углекисло­той и сероводородом на заключительной стадии разработки.[6]


    написать администратору сайта