Курсовая Елизаров С.А. СДН. Курсовая работа по дисциплине Скважинная добыча нефти (название дисциплины) на тему Газлифтная эксплуатация скважин
Скачать 76.23 Kb.
|
Министерство науки и высшего образования РФ Ульяновский государственный университет Инженерно-физический факультет высоких технологий Кафедра нефтегазового дела и сервиса КУРСОВАЯ РАБОТА по дисциплине: Скважинная добыча нефти (название дисциплины) на тему: Газлифтная эксплуатация скважин (название темы) Выполнил: студентка группы НД-ВВз-20/1 Елизаров С.А. ____________________ (подпись) Принял: к.т.н., профессор Кузнецов А.И._________________ ____________________ (подпись) Ульяновск 2022 Министерство науки и высшего образования РФ Ульяновский государственный университет Инженерно-физический факультет высоких технологий Кафедра нефтегазового дела и сервиса Утверждаю Заведующий кафедры нефтегазового дела и сервиса к.т.н., профессор ___________А.И. Кузнецов «___»______________2022 г. Задание по курсовой работе Учебная дисциплина: «Скважинная добыча нефти» Студент: Елизаров Сергей Андреевич Учебная группа: НД-ВВз-20/1 Тема работы: Газлифтная эксплуатация скважин Дата выдачи «__» ________________ 202_ г. Срок сдачи работы «__» ____________ 202_ г. Курсовая работа защищена с оценкой ________________________________________ (прописью) Отзыв о курсовой работе ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Руководитель курсовой работы к.т.н., профессор _____________________ Буров Д.О. (подпись (инициалы, фамилия) «_____» _________________ 202_ г. СОДЕРЖАНИЕ Введение………………………………………….………………………….…..4 1. Газлифтная эксплуатация нефтяных скважин……………………………. Министерство науки и высшего образования РФ 1 1.1 Область применения газлифта……………………………………………..5 1.2 Оборудование устья компрессорных скважин………………………..8 2. Газлифтный способ добычи нефти и техника безопасности при эксплуатации газлифтных скважин……………….......……………………...10 2.1 Газлифтный способ добычи нефти…...…………………………….…10 2.2 Техника безопасности при эксплуатации газлифтных скважин….....17 2.3 Обслуживание газлифтных скважин………………………………….18 Заключение ……………………………………………... …………………….20 Список литературы………………..…………………………………………...22 Введение. Газлифтная скважина – это та же фонтанная скважина, в которой недостающий для необходимого разгазирования жидкости газ подводится с поверхности по специальному каналу. По колонне труб газ с поверхности подается к башмаку, где смешивается с жидкостью, образуя ГЖС, которая поднимается на поверхность по подъемным трубам. Закачиваемый газ добавляется к газу, выделяющемуся из пластовой жидкости. В результате смешения газа с жидкостью образуется ГЖС такой плотности, при которой имеющегося давления на забое скважины достаточно для подъема жидкости на поверхность. Все понятия и определения, изложенные в теории движения газожидкостных смесей в вертикальных трубах, в равной мере приложимы к газлифтной эксплуатации скважин и служат ее теоретической основой. 1. Газлифтная эксплуатация нефтяных скважин. 1.1 Область применения газлифта. Область применения газлифта - высокодебитные скважины с большими забойными давлениями, скважины с высокими газовыми факторами и забойными давлениями ниже давления насыщения, песочные (содержащие в продукции песок) скважины, а также скважины, эксплуатируемые в труднодоступных условиях (например, затопляемость, паводки, болота и др.). Газлифт характеризуется высокой технико-экономической эффективностью, отсутствием в скважинах механизмов и трущихся деталей, простотой обслуживания скважин и регулирования работы. Логическим продолжением фонтанной эксплуатации является газлифтная эксплуатация, при которой недостающее количество газа для подъема жидкости закачивают в скважину с поверхности. Если притекающую пластовую энергию, характеризуемую газовым фактором, дополняют энергией газа, закачиваемого в скважину с поверхности, происходит искусственное фонтанирование, которое называется газлифтным подъемом, а способ эксплуатации - газлифтным. Газлифтная (компрессорная) эксплуатация нефтяных скважин осуществляется путем закачки в скважину газа; метод эксплуатации носит название газлифтный. Газ в нефтяную скважину можно подать под давлением без его дополнительной компрессии из газовых пластов. Такой способ называют бескомпрессорным. Принцип действия газлифта. В скважину опускают два ряда насосных труб. По затрубному пространству между наружной и внутренней трубами подают под давлением газ или воздух. Наружную трубу называют воздушной. Внутреннюю трубу, по которой нефть в смеси с газом или воздухом поднимается на поверхность, называют подъемной. Подъемная труба имеет меньшую длину по сравнению с воздушной. До закачки газа жидкость в подъемной и воздушной трубах находится на одном уровне. Этот уровень называют статическим - Нст. В этом случае давление жидкости на забое соответствует пластовому давлению. Рпл= Нст· r·g, отсюда Нст = Рпл /r·g. По воздушной трубе (затрубному пространству) в скважину под давлением этого газа жидкость полностью вытесняется в подъемную трубу, после этого газ проникает в подъемную трубу и перемешивается с жидкостью. Плотность газированной жидкости уменьшается и по мере ее насыщения газом достигается разность в плотности газированной и негазированной жидкостей. Вследствие этого более плотная (негазированная) жидкость будет вытеснять из подъемной трубы газированную жидкость. Если газ подавать в скважину непрерывно, то газированная жидкость будет подниматься и выходить из скважины в систему сбора. При этом в затрубном пространстве подъемной трубы устанавливается новый уровень жидкости, называемый динамической высотой: Ндин= Рзаб/r·g. При этом давление из башмака подъемной трубы Р1 = (L - h0)· r·g = hп·r·g, где L - длина подъемной трубы; h0 - расстояние от устья скважины до динамического уровня; hп = L - h0 - глубина погружения подъемной трубы в жидкость. Применяют газлифты однорядные и двухрядные В однорядном в скважину опускают только одну колонну труб, по которой газожидкостная смесь поднимается из скважины на поверхность. В двухрядном подъемнике в скважину опускают две насосные колонны труб. По затрубному пространству этих колонн с поверхности подают газ, а по внутренней колонне труб на поверхность поднимается газожидкостная смесь. Однорядный подъемник менее металлоемок, но в нем нет достаточных условий для выноса песка с забоя скважины. Поэтому однорядный подъемник применяется на скважинах, эксплуатируемых без воды и выноса песка. В двухрядном подъемнике вынос газожидкостной смеси происходит по внутренней трубе меньшего диаметра. За счет этого возрастают скорости подъемника газожидкостной смеси и улучшаются условия для выноса из скважины воды и песка. Поэтому, несмотря на увеличение металлоемкости, двухрядные подъемники применяют на сильно обводненных скважинах при наличии на забое большого количества песка. Для оборудования газлифтных подъемников применяют НКТ следующих диаметров: в однорядных подъемниках - от 48 до 89 мм и редко 114 мм, в двухрядных подъемниках - для наружного ряда труб 73, 89 и 114 мм, а для внутреннего - 48, 60 и 73 мм. При выборе диаметров НКТ необходимо иметь в виду, что минимальный зазор между внутренней обсадной колонны и наружной поверхностью НКТ должен составлять 12 ¸15 мм. Достоинства газлифтного метода: ) простота конструкции (в скважине нет насосов); ) расположение технологического оборудования на поверхности (облегчает его наблюдение, ремонт), обеспечение возможности отбора из скважин больших объемов жидкости (до 1800 ÷1900 т/сут); ) возможность эксплуатации нефтяных скважин при сильном обводнении и большом содержании песка, простота регулирования дебита скважин. ) Недостатки газлифтного метода: ) большие капитальные затраты; ) низкий КПД; ) повышенный расход НКТ, особенно при применении двухрядных подъемников; ) быстрое увеличение расхода энергии на подъем 1 т нефти по мере снижения дебита скважин с течением времени эксплуатации. 1.2 Оборудование устья компрессорных скважин Устье газлифтной скважины оборудуют стандартной фонтанной арматурой, рабочее давление, которой должно соответствовать максимальному ожидаемому на устье скважины. Арматуру до установки на скважину опрессовывают в сборном виде на пробное давление, указанное в паспорте. После установки на устье скважины ее опрессовывают на давление, допустимое для опрессовки эксплуатационной колонны, при этом независимо от ожидаемого рабочего давления арматуру монтируют с полным комплектом шпилек и уплотнений. Под ее выкидными и нагнетательными линиями, расположенными на высоте, устанавливают надежные опоры, предотвращающие падение труб при ремонте, а также вибрацию от ударов струи. Обвязка скважины и аппаратура, а также газопроводы, находящиеся под давлением, должны отогреваться только паром или горячей водой. Пуск газлифтных скважин (на примере двухрядного подъемника). При нагнетании газа жидкость в межтрубном пространстве колонн НКТ оттесняется вниз, а вытесняемая перетекает в трубы малого диаметра из эксплуатационной колонны, в результате чего уровень в ней становится ниже статического. Поэтому давление на забое становиться выше пластового и часть жидкости поглощается пластом. На любой момент времени давление закачиваемого газа соответствует гидростатическому давлению столба жидкости высотой, равной разности уровней в трубах малого диаметра (или затрубном пространстве) и межтрубном пространстве. По мере нагнетания газа увеличивается разность уровней и возрастает давление заканчиваемого газа. Давление закачиваемого газа во время достижения уровня жидкости в межтрубном пространстве башмака подъемных труб будет максимальным. Это давление называется пусковым - Рпус. Как только начнется, излив газожидкостной смеси, давление на башмаке подъемных труб уменьшится. Среднее давление нагнетаемого газа при установившемся режиме газлифтной скважины называется рабочим Рр Таким образом, запуск газлифтных скважин осуществляется продавкой газом из газораспределительного пункта (ГРП) или от передвижных компрессоров. Для снижения пускового давления в современных газлифтных установках применяют последовательное газирование участков лифта через пусковые газлифтные клапаны. Для повышения эффективности периодического газлифта может применяться плунжер - своеобразный поршень, движущийся в трубах одноразмерной колонны с минимальным зазором 1,5¸2,0 мм, чтобы уменьшить величину стекания жидкости по стенкам труб и отделяющий поднимаемый столб жидкости от газа. При ударе о верхний амортизатор, расположенный в плунжере, клапан автоматически открывается, и плунжер падает вниз. При ударе о нижний амортизатор происходит закрытие клапана, и плунжер готов к следующему циклу. Плунжерный лифт может работать также с периодической подкачкой газа в затрубное пространство. Плунжерный лифт можно использовать также при непрерывном газлифте и фонтанной эксплуатации скважины. В других установках, например при эксплуатации скважин гидропакерным автоматическим поршнем, последний не имеет проходного отверстия и после перемещения к устью скважины нагнетательным газом падает вниз после прекращения подачи газа. Зазор между поршнем и колонной НКТ - 2,5 - 4 мм. Дебит скважин - 1÷20 т/сут. Установки плунжерного лифта изготавливаются на Ижевском механическом заводе (диаметр плунжера 58,5 мм, глубина спуска 4000 м), осваиваются на Томском электромеханическом заводе им. В.В. Вахрушева. 2. Газлифтный способ добычи нефти и техника безопасности при эксплуатации газлифтных скважин. 2.1 Газлифтный способ добычи нефти. При газлифтном способе эксплуатации недостающая энергия подается с поверхности в виде энергии сжатого газа по специальному каналу. Газлифт подразделяется на два типа: компрессорный и бескомпрессорный. При компрессорном газлифте для сжатия попутного газа применяются компрессоры, а при бескомпрессорном газлифте используется газ газового месторождения, находящийся под давлением, или из других источников. Газлифт относительно других механизированных способов эксплуатации скважин имеет ряд преимуществ: 1. возможность отбора значительных объемов жидкости с больших глубин на всех этапах разработки месторождения при высоких технико-экономических показателях; 2. простота скважинного оборудования и удобство его обслуживания; . эффективная эксплуатация скважин с большими искривлениями ствола; . эксплуатация скважин в высокотемпературных пластах и с большим газовым фактором без осложнений; . возможность осуществления всего комплекса исследовательских работ по контролю за работой скважины и разработкой месторождения; . полная автоматизация и телемеханизация процессов добычи нефти; . большие межремонтные периоды работы скважин на фоне высокой надежности оборудования и всей системы в целом; . возможность одновременно-раздельной эксплуатации двух пластов и более при надежном контроле за процессом; . простота борьбы с отложением парафина, солей и коррозионными процессами; . простота работ по подземному текущему ремонту скважины, восстановлению работоспособности подземного оборудования для подъема продукции скважины. Недостатками газлифта по традиции считаются высокие начальные капитальные вложения, фондоемкость и металлоемкость. Эти показатели, во многом зависящие от принятой схемы обустройства промысла, ненамного превышают показатели при насосной добыче. Наибольшее число элементов в системе газлифта и более сложное оборудование используются в случае компрессорного газлифта. Современный газлифтный комплекс представляет собой замкнутую герметичную систему высокого давления (рис. 1). Основными элементами этой схемы являются: скважины 1, компрессорные станции 3, газопроводы высокого давления, трубопроводы для сбора нефти и газа, сепараторы различного назначения 7, газораспределительная батарея 4, групповые замерные установки, системы очистки и осушки газа с регенерацией этиленгликоля 6, дожимные насосные станции, нефтесборный пункт, В состав комплекса входит система АСУ ТП, которая включает выполнение следующих задач: 1. измерение и контроль рабочего давления на линиях подачи газа в скважины на магистральных коллекторах; 2. измерение и контроль перепада давления; . управление, оптимизация и стабилизация режима работы скважин; . расчет рабочего газа; . измерение суточного дебита скважины по нефти, воде и общему объему жидкости. Рис. 1. Схема замкнутого цикла газлифтного комплекса В результате решения задачи оптимального распределения компримируемого газа для каждой скважины назначают определенный режим закачки газа, который необходимо поддерживать до следующего изменения режима. Параметром для стабилизации принимается перепад давления на измерительной шайбе дифманометра, установленного на рабочей линии подачи газа в скважину. Выбор типа газлифтной установки и оборудования, обеспечивающего наиболее активную эксплуатацию скважин, зависит от горно-геологических и технологических условий разработки эксплуатационных объектов, конструкции скважин и заданного режима их эксплуатации. Строгой классификации газлифтных установок не существует, и они группируются на основе самых общих конструктивных и технологических особенностей. В зависимости от количества рядов труб, спущенных в скважину, их взаимного расположения и направления движения рабочего агента и газожидкостной смеси имеются системы различных типов 1. однорядный подъемник кольцевой и центральной систем 2. двухрядный подъемник кольцевой и центральной систем 3. полуторарядный лифт обычно кольцевой системы Перечисленные системы газлифтных подъемников имеют преимущества и недостатки. В связи с этим обоснование целесообразности их применения производится с учетом горно-геологических и технологических особенностей конкретного объекта разработки. По степени связи трубного и кольцевого пространства с забоем скважины установки газлифта делятся на открытые, полузакрытые и закрытые. Опыт разработки нефтяных месторождений Западной Сибири показал, что наиболее рациональна система, при которой сжатый газ отбирается из скважин, оборудованных для добычи газа и осуществления внутрискважи Внутрискважинный газлифт - наиболее эффективный способ подъема жидкости. Осуществляется он путем перепуска газа из вышележащего (возможно, и из нижележащего) газового пласта через специальный забойный регулятор. Применение внутрискважинного газлифта позволяет исключить строительство наземных газопроводов для сбора и распределения газа и газораспределительных пунктов, установок по подготовке газа (осушка, удаление части жидких углеводородов, очистка от сероводорода). В связи с вводом в подъемник ближе к башмаку НКТ газа высокого давления обеспечивается высокая термодинамическая эффективность потока в подъемнике. Если при бескомпрессорном и компрессорном газлифтах при лучших режимах термодинамическая эффективность составляет 30-40%, то при внутрискважинном бескомпрессорном газлифте значение ее достигает 85-90%. Ограничение притока воды к забоям добывающих скважин является одной из важнейших проблем в системе мероприятий по повышению эффективности разработки нефтяных месторождений и увеличению нефтеотдачи пластов. В скважинах, эксплуатирующих несколько продуктивных пластов одновременно, обводнение происходит неравномерно - вода продвигается по более проницаемым пропласткам и прослоям. Во многих случаях поступление воды по таким пропласткам происходит настолько интенсивно, что создается впечатление полного обводнения скважины. В таких условиях происходит неравномерная выработка отдельных пластов. Не меньший вред нормальной эксплуатации залежи и скважин наносит подошвенная вода. Она конусообразно затягивается в призабойную зону и поступает в скважину через нижние отверстия интервала перфорации эксплуатационной колонны. Обводнение скважин при этом из года в год прогрессирует. Преждевременное обводнение скважин (не связанное с полной выработкой пласта) уменьшает конечную нефтеотдачу, приводит к большим затратам на добычу попутной воды и подготовку товарной нефти. Большое разнообразие и сложность путей обводнения нефтяных скважин обусловливают трудность решения проблемы, которая еще больше усугубляется отсутствием надежных методов определения путей поступления воды в скважину. В условиях сложного геологического строения нефтяных залежей и пластов наблюдается все многообразие форм поступления воды: 1. за счет подтягивания подошвенной воды (образование конуса обводнения); 2. за счет опережающего продвижения воды по наиболее проницаемым пропласткам одного пласта (образование языков обводнения); . за счет первичного обводнения высокопродуктивных пластов при объединении двух и более продуктивных пластов в один объект разработки; . по некачественному цементному кольцу. При этом скважины обводняются как водами эксплуатационного пласта, так и водами выше- и нижележащих водоносных горизонтов. В последние годы в нефтедобывающей промышленности изысканию методов ограничения водопритоков к забоям нефтяных скважин уделяется все больше внимания. Методы ограничения притока вод в скважины в зависимости от характера влияния закачиваемой водоизолирующей массы на проницаемость нефтенасыщенной части пласта, вскрытого перфорацией, делятся на селективные и неселективные. Селективные методы изоляции - это такие методы, когда используют материалы, которые закачивают во всю перфорационную часть пласта. При этом образующийся осадок, гель или отверждающее вещество увеличивают фильтрационное сопротивление только в водонасыщенной части пласта, а закупорки нефтяной части пласта не происходит. При СМИ нет необходимости производить повторную перфорацию. С учетом механизма образования водоизолирующих масс можно выделить пять селективных методов: . Методы селективной изоляции, основанные на образовании водоизолирующей массы, растворимой в нефти и нерастворимой в водной среде. Рекомендуется использовать такие материалы, как нафталин, парафин, растворенные в анилине, креозоле, ацетоне, спирте, или другие пересыщенные растворы твердых углеводородов в растворителях. Применяются вязкие нефти, эмульсии и другие нефтепродукты, нерастворимые соли и латексы типа СКД-1. . Методы селективной изоляции, основанные на образовании закачиваемыми в пласт реагентами осадков в водонасыщенных зонах. Предлагается закачивать неорганические соединения типа FeSO4, M2SiO3 (M - одновалентный щелочной металл), которые, реагируя между собой в водной среде, образуют гидрат закиси железа и силикагель. Более прочную массу образуют кремнеорганические олигомеры, оказывающие продолжительный эффект воздействия. . Методы, основанные на взаимодействии реагентов с солями пластовых вод. На осаждении и структурировании ионами поливалентных металлов Са+2, Mg+2, Fe+2 и других основаны методы ограничения движения воды в пласте с применением таких высокомолекулярных соединений, как производные целлюлозы и акриловых кислот. В контакте с приведенными катионами высаживается из раствора ряд сополимеров полиакриловой и метакриловой кислот с высокой степенью гидролиза. В нефтяной среде они сохраняют свои первоначальные физические свойства, обеспечивая тем самым селективность воздействия на нефтеводонасыщенный пласт. Методы, основанные на взаимодействии реагента с поверхностью породы, покрытой нефтью. К этой группе относятся способы ограничения притока воды с использованием частично гидролизованного полиакриламид а (ПАА), мономеровакриламида, гипано-формальдегидной смеси (ГФС) и др. Механизм методов заключается в том, что при адсорбционном и механическом удерживании полимера в пласте значение остаточного сопротивления зависит от минерализации воды, молекулярной массы полимера, степени гидролиза и проницаемости пористой среды. Значение остаточных сопротивлений в нефтенасыщенной части пород на порядок ниже, чем в водонасыщенных, что объясняется сродством частиц полиакриламида с органическими соединениями нефти. Кроме того, в нефтенасыщенной части пласта ухудшаются условия для адсорбционного и механического удерживания частиц полимера породой вследствие присутствия на поверхности раздела углеводородной жидкости. Методы, основанные на гидрофобизации поверхности пород призабойной зоны с применением ПАВ, аэрированных жидкостей, полиорганосилоксанов и других химических продуктов. Общий механизм заключается в гидрофобизации пород, приводящей к снижению фазовой проницаемости пород для воды, а также в образовании пузырьков газа, которые легко разрушаются в присутствии нефти. Неселективные методы изоляции - это методы, использующие материалы, которые независимо от насыщенности среды нефтью, водой или газом образуют экран, не разрушающийся со временем в пластовых условиях. Основные требования при НСМИ - точное выделение обрабатываемого обводненного интервала и исключение снижения проницаемости продуктивной нефтенасыщеннои части пласта. Механизм изоляции вод заключается в следующем: 1. очистка ПЗП в результате диспергирования кольматирующих пласт глинистых веществ, парафина, асфальтосмолистых веществ и дальнейшее их удаление в процессе освоения скважин за счет солюбилизирующего действия (коллоидного растворения) образовавшихся мицелл в пенной системе. Главным результатом этого процесса является приобщение к разработке малопроницаемых пропластков; 2. блокирование путей продвижения воды в результате прилипания к поверхности водопроводящих каналов пузырьков газа и образования пленок из коллоидно-дисперсных соединений; . изоляция высокопроницаемых зон продуктивного пласта, являющихся главным источником обводнения. . Область эффективного применения пенных систем: низкое и среднее пластовое давление; неограниченная обводненность продукции скважины; четко выраженная неоднородность пропластков; наличие глинистой корки на стенках скважины; наличие в терригенных породах глинистого цемента. В качестве пенных систем рекомендуют использовать двухфазные и многокомпонентные пенные системы. 2.2 Техника безопасности при эксплуатации газлифтных скважин. Устье газлифтной скважины оборудуют стандартной фонтанной арматурой на рабочее давление, равное максимальному, ожидаемому на устье скважины. Арматуру до установки на скважину опрессовывают в собранном виде на паспортное пробное давление. После установки на устье скважины ее опрессовывают на давление для опрессовки эксплуатационной колонны; при этом, независимо от ожидаемого рабочего давления, арматуру монтируют с полным комплектом шпилек и уплотнений. Ее выкидные и нагнетательные линии, расположенные на высоте, должны иметь надежные опоры, предотвращающие падение труб при ремонте, а также их вибрацию при работе скважин. Обвязка скважины, аппаратуры и газопроводов под давлением в зимнее время должна отогреваться только паром или горячей водой. В газораспределительных будках следует не допускать скопления газа, который при определенном соотношении с воздухом образует взрывоопасную смесь. Газ обычно скапливается вследствие пропуска его через фланцевые соединения или сальники вентилей. Во избежание поступления газа из скважины по трубопроводу в БГРА должен быть установлен обратный клапан. Скопление взрывоопасной смеси особенно недопустимо в зимнее время, когда окна и двери газораспределительных будок закрыты. В зимнее время также могут образовываться гидратные пробки вследствие замерзания конденсата в батареях и газопроводах. Это приводит к повышению давления в трубопроводах и возможному их разрыву. Попадание газа в воздух может быть причиной взрыва. Основная мера, предотвращающая взрыв, - вентиляция помещения. Для устранения утечки газа на линии следует постоянно следить за исправностью сальниковых набивок вентилей, сосудов для конденсата (на газопроводных магистральных линиях в низких точках). В зимнее время следует утеплить помещения для предотвращения от замерзания конденсата в батареях. Для устранения источников воспламенения газа в будках необходимо: использовать электрическое освещение будок, установленное вне будок; выносить за будку электроприборы (рубильники, печи); применять инструмент, не дающий искр, при ремонте внутри будок; запретить применение открытого огня и курение в будке; сооружать будку из огнестойкого материала. 2.3 Обслуживание газлифтных скважин. Обслуживание газлифтных скважин включает исследование газлифтных скважин, анализ их работы и устранение неисправностей газлифтной установки. Целью исследования является определение параметров пластов, пластовых жидкостей и призабойной зоны для оценки рационального расхода рабочего агента (газа) по критерию максимума добычи нефти или минимума удельного расхода газа. Основной метод исследования газлифтных скважин - метод пробных откачек. Забойное давление при этом определяется глубинным манометром или расчетом по давлению нагнетаемого газа. Осложняющие условия эксплуатации газлифтных скважин требуют проведения необходимых оргтехмероприятий. Для борьбы с пескопроявлением используют: фильтры для закрепления призабойной зоны; ограничение депрессии для предотвращения разрушения скелета нефтесодержащих пород; конструкции подъемных лифтов и режимы их работы, при которых обеспечивается полный вынос песка. Для борьбы с парафином, гидратами, солеотложением, образованием эмульсии, несмотря на повышенную металлоемкость установки, иногда используют второй ряд НКТ, что позволяет закачивать в кольцевое пространство между ними растворители и химреагенты без остановки скважины. Образование ледяных и гидратных пробок в скважинах и негерметичностях лифта устраняют следующими методами: устранением негерметичности лифта и уменьшением перепада давления на клапане; вводом ингибитора в нагнетаемый газ; подогревом газа; снижением давления при прекращении подачи газа на скважину. Заключение. В качестве газа можно использовать воздух или углеводородный газ. Тогда подъемник соответственно называю эрлифтом или газлифтом. Эрлифт впервые был применен на бакинских промыслах по предложению инженера В.Г. Шухова в 1897 г. Преимущество эрлифта состоит только в неограниченности источники воздуха. При использовании газлифта в отличие от эрлифта достигается полная утилизация газа, сохранение и утилизация легких фракций нефти, образование в обводняющихся скважинах менее стойкой эмульсии, для разрушения которой требуется меньшие затраты. Поэтому в настоящее время применяется только газлифт. Газ может подаваться с помощью компрессора. Такую разновидность газлифта называют компрессорным газлифтом. В качестве газа можно использовать нефтяной или природный углеводородный газ. При компрессорном газлифте (способе эксплуатации скважин) с использованием нефтяного газа последний отделяют от добываемой нефти, подвергают промысловой подготовке и закачивают в газлифтные скважины (замкнутый газлифтный цикл, предложенный в 1914 г. М.М. Тихвинским). Технологическая схема газлифтной системы с замкнутым циклом включает газлифтные скважины, сборные трубопроводы, установку подготовки нефти, компрессорную станцию, установку подготовки газа газораспределительные батареи и газопроводы высокого давления (рис. 2). Природный газ может подаваться из соседнего газового месторождения, магистрального газопровода или газобензинового завода. По данным технико-экономических расчетов допустим транспорт газа для целей газлифта до нескольких десятков километров. Подготовка природного газа на нефтяном промысле не требуется. Технологическая схема в данном случае упрощается. Газлифт может быть компрессорным и бескомпрессорным. При бескомпрессорном газлифте природный газ под собственным давлением поступает из скважин газовых или газоконденсатных месторождений. Там же осуществляется его очистка и осушка. На нефтяном промысле иногда его только подогревают. Если нефтяная или газовая залежи залегают на одной площади, то при достаточно высоком давлении в газовой залежи может быть организован внутрискважинный бескомпрессорный газлифт. Его отличительная способность - поступление газа из выше - или нижезалегающего газового пласта непосредственно в нефтяной скважине. Список литературы. 1. Справочник по добыче нефти/В.В. Андреев, К.Р. Уразаков, В.У. Далимов и др.; Под ред. К.Р. Уразакова. 2000. - 374 с.: ил. . Персиянцев М.Н. Добыча нефти в осложненных условиях. . Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Заканчивание скважин 2000 г. . Уразаков К.Р., Богомольный Е.И., Сейтпагамбетов Ж.С., Назаров А, Г. Насосная добыча высоковязкой нефти из наклонных и обводненных скважин / Под ред. МД. Валеева. - М.: ООО «Недра-Бизнесцентр», 2003. . Булатов А.И., Качмар Ю.Д., Макаренко П.П., Яремийчук Р.С. Освоение скважин: Справочное пособие / Под ред. Р.С. Яремийчука. - М.: ООО «Недра-Бизнеспентр», 1999. . Газизов А.Ш., Газизов А.А. Повышение эффективности разработки нефтяных месторождений на основе ограничения движения вод в пластах. - М.: ООО «Недра-Бизнесцентр», 1999. . Лысенко В.Д., Грайфер В.И. Разработка малопродуктивных нефтяных месторождений. 2001. . Желтов Ю.П. Разработка нефтяных месторождений: Учеб. для вузов. - 2-е изд., перераб. и доп. - М.: ОАО «Издательство «Недра», 1998. . Басарыгин Ю.М., Будников В.Ф., Булатов А.И. газлифт давление скважина нефть |