Главная страница
Навигация по странице:

  • Классификация медицинских информационных систем

  • Медицинские приборно-компьютерные системы

  • Системы для проведения мониторинга

  • Системы управления лечебным процессом

  • Персональные компьютеры в медицинской практике

  • Компьютер в стоматологии.

  • Компьютерная томография

  • Использование компьютеров в медицинских лабораторных исследованиях

  • Компьютерная флюорография

  • Медицинская диагностика. Экспертные системы

  • Самообучающиеся интеллектуальные системы

  • Примеры использования экспертных систем в медицине

  • Лекц. Медицинские информационные системы


    Скачать 341.58 Kb.
    НазваниеМедицинские информационные системы
    Дата17.01.2021
    Размер341.58 Kb.
    Формат файлаpdf
    Имя файлаlek_2 (1).pdf
    ТипДокументы
    #168854

    1
    МЕДИЦИНСКИЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ
    Информационные процессы присутствуют во всех областях медицины и здравоохранения. От их упорядоченности зависит четкость функционирования отрасли в целом и эффективность управления ею. Информационные процессы в медицине рассматривает медицинская информатика. В настоящее время медицинская информатика признана как самостоятельная область науки, имеющая свой предмет, объект изучения и занимающая место в ряду медицинских дисциплин. Медицинская информатика – это прикладная медико-техническая наука, являющаяся результатом перекрестного взаимодействия медицины и информатики: медицина поставляет комплекс задача – методы, а информатика обеспечивает комплекс средства – приемы в едином методическом подходе, основанном на системе задача – средства – методы
    – приемы.
    Предметом изучения медицинской информатики при этом будут являться информационные процессы, сопряженные с методико-биологическими, клиническими и профилактическими проблемами. Объектом изучения медицинской информатики являются информационные технологии, реализуемые в здравоохранении. Основной целью медицинской информатики является оптимизация информационных процессов в медицине за счет использования компьютерных технологий, обеспечивающая повышение качества охраны здоровья населения.
    Классификация медицинских информационных систем
    Ключевым звеном в информатизации здравоохранения является информационная система.
    Классификация медицинских информационных систем основана на иерархическом принципе и соответствует многоуровневой структуре здравоохранения. Различают:
    1. медицинские информационные системы базового уровня, основная цель которых – компьютерная поддержка работы врачей разных специальностей; они позволяют повысить качество профилактической и лабораторно- диагностической работы, особенно в условиях массового обслуживания при дефиците времени квалифицированных специалистов. По решаемым задачам выделяют:

    информационно-справочные системы (предназначены для поиска и выдачи медицинской информации по запросу пользователя),

    консультативно-диагностические системы (для диагностики патологических состояний, включая прогноз и выработку рекомендаций по способам лечения, при заболеваниях различного профиля),

    приборно-компьютерные системы (для информационной поддержки и/или автоматизации диагностического и лечебного процесса, осуществляемых при непосредственном контакте с организмом больного),

    автоматизированные рабочие места специалистов (для автоматизации всего технологического процесса врача соответствующей специальности и обеспечивающая информационную поддержку при принятии диагностических и тактических врачебных решений);
    2. медицинские информационные системы уровня лечебно-профилактических учреждений. Представлены следующими основными группами:

    2

    информационными системами консультативных центров (предназначены для обеспечения функционирования соответствующих подразделений и информационной поддержки врачей при консультировании, диагностике и принятии решений при неотложных состояниях),

    банками информации медицинских служб (содержат сводные данные о качественном и количественном составе работников учреждения, прикрепленного населения, основные статистические сведения, характеристики районов обслуживания и другие необходимые сведения),

    персонифицированными регистрами
    (содержащих информацию на прикрепленный или наблюдаемый контингент на основе формализованной истории болезни или амбулаторной карты),

    скрининговыми системами (для проведения доврачебного профилактического осмотра населения, а также для выявления групп риска и больных, нуждающихся в помощи специалиста),

    информационными системами лечебно-профилактического учреждения
    (основаны на объединении всех информационных потоков в единую систему и обеспечивают автоматизацию различных видов деятельности учреждения),

    информационными системами НИИ и медицинских вузов (решают 3 основные задачи: информатизацию технологического процесса обучения, научно- исследовательской работы и управленческой деятельности НИИ и вузов);
    3. медицинские информационные системы территориального уровня.
    Представлены:

    ИС территориального органа здравоохранения;

    ИС для решения медико-технологических задач, обеспечивающие информационной поддержкой деятельность медицинских работников специализированных медицинских служб;

    компьютерные телекоммуникационные медицинские сети, обеспечивающие создание единого информационного пространства на уровне региона;
    4. государственный уровень, предназначенные для информационной поддержки государственного уровня системы здравоохранения.
    Медицинские приборно-компьютерные системы
    Важной разновидностью специализированных медицинских информационных систем являются медицинские приборно-компьютерные системы (МПКС).
    В настоящее время одним из направлений информатизации медицины является компьютеризация медицинской аппаратуры. Использование компьютера в сочетании с измерительной и управляющей техникой в медицинской практике позволило создать новые эффективные средства для обеспечения автоматизированного сбора информации о состоянии больного, ее обработки в реальном масштабе времени и управление ее состоянием. Этот процесс привел к созданию МПКС, которые подняли на новый качественный уровень инструментальные методы исследования и интенсивную терапию. МПКС относятся к медицинским информационным системам базового уровня. Основное отличие систем этого класса – работа в условиях непосредственного контакта с объектом исследования и в реальном режиме времени.
    Они представляют собой сложные программно-аппаратные комплексы. Для работы
    МПКС помимо вычислительной техники, необходимы специальные медицинские

    3 приборы, оборудование, телетехника, средства связи.
    Типичными представителями МПКС являются медицинские системы мониторинга за состоянием больных, например, при проведении сложных операций; системы компьютерного анализа данных томографии, ультразвуковой диагностики, радиографии; системы автоматизированного анализа данных микробиологических и вирусологических исследований, анализа клеток и тканей человека.
    В МПКС можно выделить три основные составляющие: медицинское, аппаратное и программное обеспечение.
    Применительно к МПКС медицинское обеспечение включает в себя способы реализации выбранного круга медицинских задач, решаемых в соответствии с возможностями аппаратной и программной частей системы. К медицинскому обеспечению относятся наборы используемых методик, измеряемых физиологических параметров и методов их измерения, определение способов и допустимых границ воздействия системы на пациента.
    Под аппаратным обеспечением понимают способы реализации технической части системы, включающей средства получения медико-биологической информации, средства осуществления лечебных воздействий и средства вычислительной техники.
    К программному обеспечению относят математические методы обработки медико-биологической информации, алгоритмы и собственно программы, реализующие функционирование всей системы.
    Системы для проведения мониторинга
    Задача оперативной оценки состояния пациента возникает в ряде весьма важных практических направлений в медицине и в первую очередь при непрерывном наблюдении за больным в палатах интенсивной терапии, операционных и послеоперационных отделениях.
    В этом случае требуется на основании длительного и непрерывного анализа большого объема данных, характеризующих состояние физиологических систем организма обеспечить не только оперативную диагностику осложнений при лечении, но и прогнозирование состояния пациента, а также определить оптимальную коррекцию возникающих нарушений. Для решения этой задачи предназначены мониторные МПКС. К числу наиболее часто используемых при мониторинге параметров относятся: электрокардиограмма, давление крови в различных точках, частота дыхания, температурная кривая, содержание газов крови, минутный объем кровообращения, содержание газов в выдыхаемом воздухе.
    Аппаратное обеспечение мониторных систем и аналогичных систем для функциональной диагностики принципиально практически не отличается. Важной особенностью мониторных систем является наличие средств экспресс-анализа и визуализации их результатов в режиме реального времени. Это позволяет отображать на экране монитора также динамику различных производных от контролируемых величин. Все это осуществляется в различных временных масштабах. Причем чем выше качество системы, тем больше возможностей наблюдения динамики контролируемых и связанных с ними показателей она предоставляет. Чаще всего мониторные системы используются для одновременного слежения за состоянием от одного до 6 больных, причем у каждого из них может изучаться до 16 основных

    4 физиологических параметров.
    Системы управления лечебным процессом
    К системам управления процессами лечения и реабилитации относятся автоматизированные системы интенсивной терапии, биологической обратной связи, а также протезы и искусственные органы, создаваемые на основе микропроцессорной технологии.
    В системах управления лечебным процессом на первое место выходят задачи точного дозирования количественных параметров работы, стабильного удержания их заданных значений в условиях изменчивости физиологических характеристик организма пациента.
    Под автоматизированными системами интенсивной терапии понимают системы, предназначенные для управления состоянием организма в лечебных целях, а также для его нормализации, восстановления естественных функций органов и физиологических систем больного человека, поддержания их в пределах нормы. По реализуемой в них структурной конфигурации системы интенсивной терапии разделяют на два класса – системы программного управления и замкнутые управляющие системы.
    К системам программного управления относятся системы для осуществления лечебных воздействий. Например, различная физиотерапевтическая аппаратура, оснащенная средствами вычислительной техники, устройства для вливаний лекарственных препаратов, аппаратура для искусственной вентиляции легких и ингаляционного наркоза, аппараты искусственного кровообращения.
    Замкнутые системы интенсивной терапии структурно являются более сложными
    МПКС, так как они объединяют в себе задачи мониторинга, оценки состояния больного и выработки управляющих лечебных воздействий. Поэтому на практике замкнутые системы интенсивной терапии создаются только для очень частных, строго фиксированных задач.
    Системы биологической обратной связи предназначены для предоставления пациенту текущей информации о функционировании его внутренних органов и систем, что позволяет путем сознательного волевого воздействия пациента достигать терапевтического эффекта при определенном виде патологий.
    Телемедицина
    XXI век должен стать «веком коммуникаций», что подразумевает повсеместное использование глобальных информационных систем. Использование таких систем в медицине открывает качественно новые возможности:

    обеспечение взаимодействия региональных клиник с крупными медицинскими центрами;

    оперативное получение результатов последних научных исследований;

    подготовка и переподготовка кадров.
    Перечисленные возможности можно охарактеризовать одним общим понятием
    – телемедицина.
    Телемедицина – это комплекс современных лечебно-диагностических методик, предусматривающих дистанционное управление медицинской информацией.

    5
    Возникновение телемедицины обычно связывают с врачебным контролем при космических полетах. Первоначально это было измерение показателей жизнедеятельности у животных на космических аппаратах, затем у космонавтов.
    Причиной прорыва телемедицины в практику послужило бурное развитие коммуникационных сетей, а также методов работы с информацией, позволивших обеспечить двух- и многосторонний обмен видео- и аудиоинформацией и любой сопроводительной документацией.
    Простейшим случаем реализации возможностей телемедицины является быстрый доступ врача к необходимой справочной информации.
    Основным приложением телемедицины является обслуживание тех групп населения, которые оказались вдали от медицинских центров или имеют ограниченный доступ к медицинским службам.
    Другим важным объектом телемедицины является система диагностических центров регионов, когда необходима оперативная связь между лечащим врачом и врачом-диагностом, которые оказываются в разных лечебных учреждениях, часто разнесенных на большие расстояния.
    Еще одним важным направлением телемедицины является скоропомощная ситуация и сложные случаи, когда требуется срочная консультация специалистов из центральных медучреждений для спасения больного или определения тактики лечения в сложных ситуациях, в том числе в крупнейших мировых медицинских центрах.
    Следующим направлением является также дистанционное медицинское образование.
    Наиболее перспективные тенденции в создании современных информационных систем можно объединить понятием «архитектура, обусловленная моделированием»
    (MDA) Философия этого подхода заключается в том, что в сложной системе невозможно предусмотреть все возможные сценарии, будущее развитие системы и т.д. Поэтому целесообразно разрабатывать некоторую общую для всех участников объектную модель и определять принципы ее наращивания и интеграции приложений в систему. MDA решает эти вопросы посредством разделения задач проектирования и реализации. Это позволяет быстро разрабатывать и внедрять новые спецификации взаимодействия, используя новые развернутые технологии, базирующиеся на достоверно проверенных моделях.
    Процесс создания информационных MDA представляет собой типичный сложившийся цикл разработки любого сложного информационного проекта: фаза выработки требований – фаза анализа – фаза реализации. В рамках каждой из фаз прорабатываются специфические для нее вопросы соответствия требованиям, согласованности и функциональности.
    Современные информационные системы, как правило, разворачиваются в глобальных сетях типа сети Интернет. Не являются исключением и системы телемедицины. Время автономных, локальных приложений уходит в прошлое. Их место занимают информационные системы, характеризующиеся многообразием архитектур, многоплатформенностью, разнообразием форматов данных и протоколов.
    ПУТИ РАЗВИТИЯ МЕДИЦИНСКИХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ
    Медицинские информационные технологии включают в себя средства

    6 воздействия на организм внешними информационными факторами, описание способов и методов их применения и процесс обучения навыкам практической деятельности. Соответственно дальнейшее развитие этих технологий требует рассмотрения и решения следующих практических вопросов. На первом месте стоит насущный вопрос о необходимости широкого внедрения в клиническую практику апробированных средств и методов информационного воздействия, отвечающих таким требованиям, как безопасность и простота их использования, высокая терапевтическая эффективность их применения. Следующим актуальным вопросом является стимулирование и поощрение разработки и создания новых средств и методов воздействия на организм человека, соответствующих принципам и постулатам информационной медицины. Дальнейшее развитие и совершенствование данной области медицины связано с оптимизацией средств и методов обратной биологической связи при информационном воздействии, адекватных изменениям в организме в соответствии с принципами и постулатами информационной медицины.
    Один из главных путей решения ряда медицинских, социальных и экономических проблем в настоящее время представляет информатизация работы медицинского персонала. К этим проблемам относится поиск действенных инструментов, способных обеспечить повышение трех важнейших показателей здравоохранения: качества лечения, уровня безопасности пациентов, экономической эффективности медицинской помощи. Базовым звеном информатизации является использование в больницах современных клинических информационных систем, снабженных механизмами поддержки принятия решений. Однако эти системы не получили широкого распространения, так как пока не разработаны научные и методологические подходы к созданию клинических информационных систем.
    ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В МЕДИЦИНЕ
    Современный период развития общества характеризуется сильным влиянием на него компьютерных технологий, которые проникают во все сферы человеческой деятельности, обеспечивают распространение информационных потоков в обществе, образуя глобальное информационное пространство. Они очень быстро превратились в жизненно важный стимул развития не только мировой экономики, но и других сфер человеческой деятельности. Трудно найти сферу, в которой сейчас не используются информационные технологии. Лидирующие области по внедрению компьютерных технологий занимают архитектура, машиностроение, образование, банковская структура и конечно же медицина. Во многих медицинских исследованиях просто невозмо nn жно обойтись без компьютера и специального программного обеспечения к нему. Умение использовать информационные технологии становится одним из самых важных профессиональных навыков медика. Можно сказать, без применения компьютеров вылечить многие болезни невозможно.
    Известно, что в медицине самые большие капиталовложения приходятся на создание новых лекарств, а второе место занимают информационные технологии.
    Системы здравоохранения даже самых богатых стран сталкиваются с экономическими и производственными трудностями в своем назначении поддерживать качество медицинской помощи перед лицом растущих требований стареющего населения и возросших возможностей в лечебном деле.

    7
    Пытаясь разрешить эти проблемы, здравоохранение все больше обращается к информационным технологиям, в которых видит возможность управления ресурсами, уменьшения очередей, исключения врачебных ошибок и обеспечения современного уровня лечения для населения отдаленных городов и сел.
    Информационные технологии сделались неотъемлемой составляющей здравоохранения. Они применяются на всех уровнях управления и оказания медицинской помощи. В настоящее время осуществляется переход к комплексной автоматизации отдельных направлений медицины, лечебно-профилактических учреждений и территориального здравоохранения.
    Персональные компьютеры в медицинской практике
    Практическая медицина становится все более и более автоматизированной.
    Программное обеспечение включает в себя системное и прикладное. В системное программное обеспечение входит сетевой интерфейс, который обеспечивает доступ к данным на сервере. Данные, введенные в компьютер, организованы, как правило, в базу данных, которая, в свою очередь, управляется прикладной программой управления базой данных (СУБД) и может содержать, в частности, истории болезни, рентгеновские снимки в оцифрованном виде, статистическую отчетность по стационару, бухгалтерский учет.
    Прикладное обеспечение представляет собой программы, для которых, собственно, и предназначен компьютер. Это – вычисления, обработка результатов исследований, различного рода расчеты, обмен информацией между компьютерами.
    Сложные современные исследования в медицине немыслимы без применения вычислительной техники. К таким исследованиям можно отнести компьютерную томографию, томографию с использованием явления ядерно-магнитного резонанса, ультрасонографию, исследования с применением изотопов. Количество информации, которое получается при таких исследования так огромно, что без компьютера человек был бы неспособен ее воспринять и обработать.
    Компьютер в стоматологии.
    Сегодня компьютеры есть в каждой стоматологической клинике. Наиболее широко распространены на стоматологическом рынке компьютерных программ – системы цифровой (дигитальной) рентгенографии, часто называемые радиовидеографами. Системы позволяют детально изучить различные фрагменты снимка зуба и пародонта, увеличить или уменьшить размеры и контрастность изображений, сохранить всю информацию в базе данных и перенести ее при необходимости на бумагу с помощью принтера. Вторая группа программ – системы для работы с дентальными видеокамерами. Они позволяют детально запечатлять состояние групп или определенно взятых зубов «до» и «после» проведенного лечения.
    Электронный документооборот модернизирует обмен информации внутри стоматологической клиники. Различная степень доступа врачей и пациентов, обязательное использование системы шифрования для кодирования диагнозов, результатов обследования, терапевтических, хирургических, ортодонтических и др. процедур дает возможность надежно защищать любую информацию.
    Компьютерная томография

    8
    Томография является одним из примеров внедрения новых информационных технологий в медицине. Создание этого метода без мощных компьютеров было бы невозможным.
    Томография (магнитно-резонансная, рентгеновская, ультразвуковая) – это метод изучения состояния организма человека, при котором производится последовательное, очень частое измерение тонких слоев внутренних органов. Эти данные записываются в компьютер, который на их основе конструирует полное объемное изображение. Физические основы измерений разнообразны: рентгеновские, магнитные, ультразвуковые, ядерные и пр.
    Совокупность устройств, обеспечивающих измерения, сканирование, и компьютер, создающий полную картину, называются томографом.
    Использование компьютеров в медицинских лабораторных исследованиях
    При использовании компьютера в лабораторных медицинских исследованиях в программу закладывают определенный алгоритм диагностики. Создается база заболеваний, где каждому заболеванию соответствуют определенные симптомы или синдромы. В процессе тестирования, используя алгоритм, человеку задаются вопросы. На основании его ответов подбираются симптомы (синдромы), максимально соответствующие группе заболеваний. В конце теста выдается эта группа заболеваний с обозначением в процентах - насколько это заболевание вероятно у данного тестируемого. Чем выше проценты, тем выше вероятность этого заболевания. Сейчас делаются попытки создать такую систему (алгоритм), которая бы выдавала не несколько, а один диагноз. Но все это пока на стадии разработки и тестирования. Вообще, на сегодняшний день в мире создано более 200 компьютерных экспертных систем.
    Компьютерная флюорография
    Программное обеспечение (ПО) для цифровых флюорографических установок, содержит три основных компоненты: модуль управления комплексом, модуль регистрации и обработки рентгеновских изображений, включающий блок создания формализованного протокола, и модуль хранения информации, содержащий блок передачи информации на расстояние. Подобная структура ПО позволяет с его помощью получать изображение, обрабатывать его, сохранять на различных носителях и распечатывать твердые копии.
    Данный программный продукт максимально полно отвечает требованиям решения задачи профилактических исследований легких у населения. Наличие блока программы для заполнения и хранения протокола исследования в виде стандартизованной формы создает возможность автоматизации анализа данных с выдачей диагностических рекомендаций, а также автоматизированного расчета различных статистических показателей. Также предусмотрена возможность передачи снимков и протоколов при использовании современных систем связи с целью консультаций диагностически сложных случаев в специализированных учреждениях.
    Медицинские информационные системы призваны повысить качество и доступность медицинских услуг. Использование новых информационных технологий в современных медицинских центрах позволит легко вести полный учет всех оказанных услуг, сданных анализов, выписанных рецептов. Также при автоматизации медицинского учреждения заполняются электронные амбулаторные карты и истории болезни, составляются отчеты и ведется медицинская статистика. Автоматизация

    9 медицинских учреждений – это создание единого информационного пространства
    ЛПУ, что, в свою очередь, позволяет создавать автоматизированные рабочие места врачей, организовывать работу отдела медицинской статистики, создавать базы данных, вести электронные истории болезней и объединять в единое целое все лечебные, диагностические, административные, хозяйственные и финансовые процессы. Использование информационных технологий в работе поликлиник или стационаров значительно упрощает ряд рабочих процессов и повышает их эффективность при оказании медицинской помощи.
    Медицинская диагностика. Экспертные системы
    Экспе́ртная систе́ма (ЭС, expert system) — компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. ЭС начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление.
    Экспертные системы представляют собой компьютерные программы, которые могут проводить анализ на основе определённых исходных данных и способные заменять специалистов узкого профиля в проблемных ситуациях. Сами системы рассматриваются как модели поведения экспертов, и, как и эксперты-люди, в своей работе используют знания. Для ЭС "знания" представлены в виде баз знаний
    (формализованных совокупностей фактов и правил логического вывода в определённых областях), которые можно изменять и дополнять.
    Поиск решения может осуществляться с помощью нескольких различных подходов:
    • логическими методами (направленными на создание экспертных систем с логическими моделями баз знаний);
    • математическими методами (имитационным и аналитическим);
    • эвристическими (не имеющими строгого обоснования) методами.
    Медицинские экспертные системы - специализированное программное обеспечение для помощи врачам в принятии решений, которыепозволяют врачу не только проверить собственные диагностические предположения, но и обратиться к компьютеру за консультацией в трудных диагностических случаях.
    Область исследований, посвященная формализации способов представления знаний и построению экспертных систем (ЭС), называют «инженерией знаний». Этот термин введен Е. Фейгенбаумом и в его трактовке означает «привнесение принципов и средств из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов».
    Весьма существенно, что работа с экспертными системами может вестись удалённо
    (телемедицина).
    ЭС позволяют решать задачи диагностики, дифференциальной диагностики, прогнозирования, выбора стратегии и тактики лечения и др.
    Наиболее важные области применения экспертных систем:

    Диагностика неотложных и угрожающих состояний в условиях дефицита времени;

    Ограниченные возможности обследования;

    Скудная клиническая симптоматика;

    Быстрые темпы развития заболевания.

    10
    Общий принцип, положенный в основу формирования медицинских экспертных систем, - включение в базу знаний синдромов, отражающих состояние всех основных систем органов.
    В создании экспертных систем участвуют, как правило, врач-эксперт, математик и программист. Основная роль в разработке такой системы принадлежит эксперту-врачу.
    Экспертные системы позволяют не только производить раннюю доклиническую диагностику, но также оценивать сопротивляемость организма и его предрасположенность к заболеваниям, в том числе онкологическим.
    Самообучающиеся интеллектуальные системы
    Среди экспертных медицинских систем особое место занимают так называемые самообучающиеся интеллектуальные системы (СИС). Они основаны на методах автоматической классификации ситуаций из реальной практики или на методах обучения на примерах. Наиболее яркий пример СИС — искусственные нейронные сети.
    Искусственные нейронные сети (ИНС; artificial neural networks) — это структура для обработки когнитивной информации, основанная на моделировании функций мозга. Основу каждой ИНС составляют относительно простые, в большинстве случаев однотипные элементы (ячейки), имитирующие работу нейронов мозга. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены.
    Искусственный нейрон обладает группой синапсов
    — однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон — выходную связь данного нейрона, с которой сигнал
    (возбуждения или торможения) поступает на синапсы следующих нейронов.
    Для ИНС характерен принцип параллельной обработки сигналов, что достигается путем объединения большого числа нейронов в так называемые слои и соединения нейронов различных слоев. Теоретически количество слоев и количество нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера. В общем случае, чем сложнее ИНС, тем масштабнее задачи, подвластные ей.
    Наиболее важным отличием ИНС от остальных методов прогнозирования является возможность конструирования экспертных систем самим врачом- специалистом, который может передать нейронной сети свой индивидуальный опыт и опыт своих коллег или обучать сеть на реальных данных, полученных путем наблюдений. Нейронные сети способны принимать решения, основываясь на выявляемых ими скрытых закономерностях в многомерных данных. Положительное отличительное свойство ИНС состоит в том, что они не программируются, т.е. не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В ряде случаев ИНС могут демонстрировать удивительные свойства, присущие мозгу человека, в том числе отыскивать закономерности в запутанных данных. Нейронные сети нашли применение во многих областях техники, где они используются для решения многочисленных прикладных задач: в космонавтике, автомобилестроении, банковском и военном деле, страховании, робототехнике, при передаче данных и др. Другое, не менее важное, свойство нейронной сети состоит в способности к обучению и обобщению полученных знаний. Сеть обладает чертами так называемого искусственного интеллекта. Натренированная на ограниченном

    11 множестве обучающих выборок, она обобщает накопленную информацию и вырабатывает ожидаемую реакцию применительно к данным, не обрабатывавшимся в процессе обучения.
    Примеры использования экспертных систем в медицине
    В области хирургии P.L. Liew et al. на основе ИНС создали систему прогнозирования риска развития желчнокаменной болезни у людей с избыточной массой тела. Авторы ретроспективно изучили антропоморфометрические, анамнестические, клинические и лабораторные данные 117 прооперированных пациентов с ожирением. Была построена ИНС, обученная алгоритмом обратного распространения. Использовались 30 входных переменных, включая клинические данные (пол, возраст, индекс массы тела, сопутствующие заболевания), лабораторные показатели и результаты гистологического исследования. Прогнозирующую ценность ИНС сравнивали с моделью логистической регрессии, обученной на той же базе данных. ИНС продемонстрировала лучшую прогнозирующую ценность и более низкую ошибку, чем модель логистической регрессии. Наиболее важные факторы риска желчнокаменной болезни, по данным обеих методик, — повышенное диастолическое артериальное давление, преморбидный фон, нарушение метаболизма глюкозы и повышение уровня холестерина крови.
    В эндоскопии A. Das et al. использовали нейросетевые технологии для сортировки больных с неварикозными кровотечениями из верхних отделов желудочно-кишечного тракта. Была исследована эффективность ИНС, обученной по клиническим и лабораторным данным 387 пациентов с изучаемой патологией, верификация — по данным 200 пациентов с проведением ROC-анализа. На выходе сети имелись две результирующие переменные: наличие или отсутствие признаков продолжающегося кровотечения и потребность в лечебной эндоскопии.
    В онкоурологии P. Bassi et al. прогнозировали 5-летнюю выживаемость пациентов, перенесших радикальную цистэктомию по поводу рака мочевого пузыря.
    Для этого были разработаны и сравнены ИНС и модель логистической регрессии
    (МЛР). Выявлено, что единственными статистически достоверными предсказателями
    5-летней выживаемости оказались стадия опухоли и наличие или отсутствие прорастания в соседние органы
    С. Stephan et al. применили ИНС для автоматизированного анализа биоптата предстательной железы. Методика основывалась на выявлении общего простат- специфического антигена (ПСА) и определении процента свободного ПСА.
    F. K. Chun et al. использовали ИНС для выявления группы риска рака предстательной железы.
    В трансплантологии G. Santori et al. применили нейросетевые технологии в прогнозировании отсроченного снижения креатинина сыворотки крови у детей после трансплантации почки. Для выявления корреляции между входными переменными и искомым результатом у пациентов, подлежащих трансплантации почки, была создана искусственная нейронная сеть, обученная на 107 клинических примерах. Были отобраны наиболее важные переменные, коррелирующие с результатом: креатинин сыворотки крови в день пересадки, диурез за первые 24 часа, эффективность гемодиализа, пол реципиента, пол донора, масса тела в первый день после пересадки, возраст.
    В медицинской радиологии F. Dоhler et al. использовали нейронную сеть для классификации изображений МРТ с целью автоматизированного обнаружения

    12 гиппокампального склероза. ИНС была обучена на 144 примерах изображений и позволяла классифицировать изменения в ткани головного мозга относительно наличия склеротических изменений. E.E. Gassman et al. создали ИНС для автоматизированной идентификации костных структур и оценили надежность этой методики по сравнению с традиционными. Кроме того, сегментацию структур кости
    ИНС выполнила в 10 раз быстрее.
    В неврологии A.T. Tzallas et al. применили нейросеть для прогнозирования эпилептических приступов на основе анализа электроэнцефалограмм.
    Прогностическая точность метода составила 98 – 100 %.
    Современные технические возможности позволяют выйти на качественно новый уровень представления течения заболевания, а именно на основе экспертных автоматизированных технологий смоделировать типовое развитие патологического процесса. Экспертные компьютерные медицинские системы позволяют врачу не только проверить собственные диагностические предположения, но и обратиться к компьютеру за консультацией в трудных диагностических случаях.


    написать администратору сайта