Главная страница
Навигация по странице:

  • Условия интерференции

  • Зеркала Френеля

  • Бипризма Френеля

  • Билинза Бийе

  • Реферат интерференция света Кузина Вера 4Д91. Методы наблюдения интерференции света


    Скачать 15.58 Kb.
    НазваниеМетоды наблюдения интерференции света
    Дата07.04.2021
    Размер15.58 Kb.
    Формат файлаdocx
    Имя файлаРеферат интерференция света Кузина Вера 4Д91.docx
    ТипДокументы
    #192215

    Методы наблюдения интерференции света

    Интерференцией называется явление перераспределения энергии в пространстве при суперпозиции электромагнитных волн. При наложении двух (или нескольких) когерентных волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности. Такое перераспределение энергии волн происходит в связи с тем, что разность фаз когерентных волн в каждой точке пространства остается постоянной со временем. Так как световые волны в пространстве распространяются независимо друг от друга, то имеет место суперпозиция.

    Условия интерференции. Волны должны быть когерентны. Когерентность – согласованность. В простейшем случае когерентными являются волны одинаковой длины, между которыми существует постоянная разность фаз. Все источники света, кроме лазера, некогерентны, однако Т. Юнг впервые пронаблюдал (1802) явление интерференции, разделив волну на две с помощью двойной щели.

    Свет, испускаемый обычными источниками, можно рассматривать как хаотическую последовательность отдельных цугов синусоидальных волн. Длительность отдельного цуга не превышает 10-8 с даже в тех случаях, когда атомы источника не взаимодействуют (газоразрядные лампы низкого давления). Любой регистрирующий прибор имеет значительно большее время разрешения, поэтому наблюдение интерференции невозможно.

    Опыт Юнга

          Образование интерференционной картины можно наблюдать в рассмотренном нами в п. 8.2 опыте Юнга, использующем метод деления волнового фронта (рис. 8.3).

          Прошедший через узкую длинную щель S свет, вследствие дифракции образует расходящийся пучок, который падает на второй экран B с двумя, параллельными между собой узкими щелями S1 и S2, расположенными близко друг к другу на равных расстояниях от S. Эти щели действуют как вторичные синфазные источники, и исходящие от них волны, перекрываясь, создают интерференционную картину, наблюдаемую на удаленном экране C. Расстояние между соседними полосами равно:      

    Измеряя ширину интерференционных полос, Юнг в 1802 г. впервые определил длины световых волн для разных цветов, хотя эти измерения и не были точными.

    Зеркала Френеля

          Другой интерференционный опыт, аналогичный опыту Юнга, но в меньшей степени осложненный явлениями дифракции и более светосильный, был осуществлен О. Френелем в 1816 г. Две когерентные световые волны получаются в результате отражения от двух зеркал М и N, плоскости которых наклонены под небольшим углом φ друг к другу (рис. 8.4).

          Источником служит узкая ярко освещенная щель S, параллельная ребру между зеркалами. Отраженные от зеркал пучки падают на экран, и в той области, где они перекрываются (поле интерференции), возникает интерференционная картина. От прямого попадания лучей от источника S экран защищен ширмой  . Для расчета освещенности J экрана можно считать, что интерферирующие волны испускаются вторичными источниками   и  , представляющими собой мнимые изображения щели S в зеркалах. Поэтому J будет определяться формулой двулучевой интерференции, в которой расстояние l от источников до экрана следует заменить на  , где   - расстояние от S до ребра зеркал, b - расстояние от ребра до экрана (см. рис 8.4.). Расстояние d между вторичными источниками равно:  . Поэтому ширина интерференционной полосы на экране равна:

    Бипризма Френеля

          В данном интерференционном опыте, также предложенном Френелем, для разделения исходной световой волны на две используют призму с углом при вершине, близким к 180°.

          Источником света служит ярко освещенная узкая щель S, параллельная преломляющему ребру бипризмы (рис. 8.5).

          Можно считать, что здесь образуются два близких мнимых изображения S1 и S2 источника S, так как каждая половина бипризмы отклоняет лучи на небольшой угол  .

    Билинза Бийе

          Аналогичное бипризме Френеля устройство, в котором роль когерентных источников играют действительные изображения ярко освещенной щели, получается, если собирающую линзу разрезать по диаметру и половинки немного раздвинуть (рис. 8.6).

          Прорезь закрывается непрозрачным экраном А, а падающие на линзу лучи проходят через действительные изображения щели   и   и дальше перекрываются, образуя интерференционное поле.

    В заключение обратим ваше внимание на то, что отсутствие света в областях интерференционных минимумов не означает превращение световой энергии в другие формы. Как и при интерференции механических волн, отсутствие света в данной области пространства означает, что происходит перераспределение энергии, отражённых волн нет и весь свет проходит сквозь объектив.


    написать администратору сайта