Главная страница
Навигация по странице:

  • Физические методы

  • Химические методы

  • методы получения наночастиц. Методы получения наночастиц и наноматериалов. На слайде представлена классификация методов получения наноматериалов


    Скачать 18.49 Kb.
    НазваниеНа слайде представлена классификация методов получения наноматериалов
    Анкорметоды получения наночастиц
    Дата08.04.2021
    Размер18.49 Kb.
    Формат файлаdocx
    Имя файлаМетоды получения наночастиц и наноматериалов.docx
    ТипДокументы
    #192712

    На слайде представлена классификация методов получения наноматериалов.

    Как было сказано ранее, существуют два подхода к получению наночастиц: вверху – нисходящий (физический), внизу – восходящий (химический).

    Физические методы получения основываются на физических превращениях: испарении, конденсации, возгонке, резком охлаждении или нагреве, распылении расплава и т.п.

    К химическим относятся методы, основным диспергирующим этапом которых являются: электролиз, восстановление, термическое разложение (осаждение, золь-гель метод, термическое разложение или пиролиз, газофазные химические реакции, химическое восстановление, гидролиз, электроосаждение, фото-и радиационно-химическое восстановление, криохимический синтез.)

    Биологические методы получения основаны на использовании биохимических процессов, происходящих в белковых телах.

    Также к данной классификации относят и механические методы получения. В их основе лежит воздействие больших деформирующих нагрузок: трения, давления, прессования, вибрации, кавитационные процессы и т.п.

    Вообще, классификация методов весьма условна, так как в реальных методах получения наноструктур используются различные процессы. Химические процессы, часто применяются вместе с физическими и механическими.

    Методы механического измельчения применительно к наноматериалам часто называют механосинтезом. Основой механосинтеза является механическая обработка твёрдых веществ. Механическое воздействие при измельчении материалов является импульсным, т.е. возникновение поля напряжений и его последующая релаксация происходят не в течение всего времени пребывания частиц в реакторе, а только в момент соударения частиц и в короткое время после него. Механическое воздействие является также и локальным, так как происходит не во всей массе твёрдого вещества, а там, где возникает и затем релаксирует поле напряжений. Благодаря импульсности и локальности в небольших областях материала в течение короткого времени сосредотачиваются большие нагрузки. Это приводит к возникновению в материале дефектов, напряжений, полос сдвига, деформаций, трещин. В результате происходит измельчение вещества, ускоряется массоперенос и перемешивание компонентов, активируется химическое взаимодействие твёрдых реагентов. В результате механического истирания и механического сплавления может быть достигнута более высокая взаимная растворимость некоторых элементов в твёрдом состоянии, чем возможна в равновесных условиях. Размол проводится в шаровых, планетарных, вибрационных, вихревых, гироскопических, струйных мельницах, аттриторах. Измельчение в этих устройствах происходит в результате ударов и истирания.

    Физические методы. Методы испарения–конденсации основаны на получении порошков в результате фазового перехода пар – твёрдое тело или пар – жидкость – твёрдое тело в газовом объёме либо на охлаждаемой поверхности. Сущность метода состоит в том, что исходное вещество испаряется путём интенсивного нагрева, а затем резко охлаждается. Нагрев испаряемого материала может осуществляться различными способами: резистивным, лазерным, плазменным, электрической дугой, индукционным, ионным. Процесс испарения–конденсации можно проводить в вакууме или среде нейтрального газа.

    Электрический взрыв проводников проводят при давлении 0,1 – 60 МПа. В этом методе тонкие проволочки металла диаметром 0,1 – 1 мм помещают в камеру и импульсно подают к ним ток большой силы. Продолжительность импульса 10–5 – 10–7 с, плотность тока 104 – 106 А/мм 2 . При этом проволочки мгновенно разогреваются и взрываются. Образование частиц происходит в свободном полёте. В зависимости от окружающей среды может происходить образование металлических частиц (инертные среды) или оксидных (нитридных) порошков (окислительные или азотные среды). Требуемый размер частиц и производительность процесса регулируются параметрами разрядного контура и диаметром используемой проволоки. Форма наночастиц преимущественно сферическая.

    В настоящее время наиболее распространенным методом получения углеродных нанотрубок является метод термического распыления графитовых электродов в плазме дугового разряда. Процесс синтеза осуществляется в камере, заполненной гелием под высоким давлением. При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверхности катода образуется осадок, в котором формируются нанотрубки углерода. Образующиеся многочисленные нанотрубки имеют длину порядка 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм. Пучки нанотрубок регулярно покрывают поверхность катода, образуя сотовую структуру. Ее можно обнаружить, рассматривая осадок на катоде невооруженным глазом. Пространство между пучками нанотрубок заполнено смесью неупорядоченных наночастиц и одиночных нанотрубок. Содержание нанотрубок в углеродном осадке (депозите) может приближаться к 60%.

    Химические методы получения наноразмерных материалов можно разделить на группы, в одну из которых можно отнести методы, где наноматериал получают по той или иной химической реакции, в которых участвуют определённые классы веществ. В другую можно отнести различные варианты электрохимических реакций.

    Метод осаждения заключается в осаждении различных соединений металлов из растворов их солей с помощью осадителей. Продуктом осаждения являются гидроксиды металлов. Регулированием рН и температуры раствора возможно создание оптимальных для получения наноматериалов условий осаждения, при которых повышаются скорости кристаллизации и образуется высокодисперсный гидроксид. Затем продукт прокаливают и, при необходимости, восстанавливают. Получаемые нанопорошки металлов имеют размер частиц от 10 до 150 нм. Форма отдельных частиц обычно близка к сферической. Однако, этим методом, варьируя параметры процесса осаждения, можно получать порошки игольчатой, чешуйчатой, неправильной формы.

    Золь–гельный метод первоначально был разработан для получения порошка железа. Он сочетает процесс химической очистки с процессом восстановления и основан на осаждении из водных растворов нерастворимых металлических соединений в виде геля, получаемого с помощью модификаторов (полисахаридов), с последующим их восстановлением. В частности, содержание Fe в порошке составляет 98,5 – 99,5 %. В качестве сырья можно использовать соли железа, а также отходы металлургического производства: лом металлов или отработанный травильный раствор. Благодаря использованию вторичного сырья, метод обеспечивает возможность производства чистого и дешёвого железа. Этим методом можно получать и другие классы материалов в наносостоянии: оксидную керамику, сплавы, соли металлов и др.

    Наноматериалы могут производиться и в биологических системах. Как оказалось, природа использует материалы наноразмеров миллионы лет. Например, во многих случаях живые системы (некоторые бактерии, простейшие организмы и млекопитающие) производят минеральные вещества с частицами и микроскопическими структурами в нанометровом диапазоне размеров. Было установлено, что биологические наноматериалы отличаются от других, поскольку их свойства вырабатывались эволюционным путём в течение длительного времени. В процессе биоминерализации действуют механизмы тонкого биологического контроля, в результате чего производятся материалы с чётко определёнными характеристиками. Это обеспечило высокий уровень оптимизации их свойств по сравнению со многими синтетическими наноразмерными материалами.

    Живые организмы могут быть использованы как прямой источник наноматериалов, свойства которых могут быть изменены путём варьирования биологических условий синтеза или при переработке после извлечения.

    Так, например, с помощью просвечивающей электронной микроскопии (ПЭМ) была подтверждена способность изучаемых грибных культур к биообразованию НЧ золота, серебра, селена и кремния. В исследуемых образцах было обнаружено большое количество электронно-плотных образований, различающихся по количеству, локализации и размеру в зависимости от культуры, с помощью которой они были образованы, и исследуемых соединений.

    Все методы, используемые для получения наночастиц должны отвечать основным требованиям:

     метод должен обеспечивать получение материала контролируемого состава с воспроизводимыми свойствами;

     метод должен обеспечивать временную стабильность наноматериалов, т.е. в первую очередь защиту поверхности частиц от самопроизвольного окисления и спекания в процессе изготовления;

     метод должен иметь высокую производительность и экономичность;

     метод должен обеспечивать получение наноматериалов с определенным размером частиц или зерен, причем их распределение по размерам должно быть, при необходимости, достаточно узким.

    Следует отметить, что в настоящее время не существует метода, отвечающего в полной мере всей совокупности требований. В зависимости от способа получения такие характеристики наноматериалов, как средний размер и форма частиц, их гранулометрический состав, величина удельной поверхности, содержание в них примесей и др., могут колебаться в весьма широких пределах.


    написать администратору сайта