Главная страница
Навигация по странице:

  • 1. Уровни модели OSI.

  • 2. Для чего используется физическая структуризация сети

  • экзамен ОСТ - Мирахимов Р.. Национальный авиационный университет


    Скачать 243.27 Kb.
    НазваниеНациональный авиационный университет
    Дата19.12.2021
    Размер243.27 Kb.
    Формат файлаdocx
    Имя файлаэкзамен ОСТ - Мирахимов Р..docx
    ТипДокументы
    #308631

    НАЦИОНАЛЬНЫЙ АВИАЦИОННЫЙ УНИВЕРСИТЕТ

    Факультет аэронавигации, электроники и телекоммуникаций

    Кафедра телекоммуникационных и радиоэлектронных систем

    Экзаменационная работа

    с дисциплины:

    «Основы сетевых информационных технологий»

    студента группы АР501Бз

    Мирахимова Расула Рахимовича

    БИЛЕТ No5
    1. Уровни модели OSI

    2. Для чего используется физическая структуризация сети.


    1. Уровни модели OSI.
    Сетевая модель OSI (The Open Systems Interconnection model) — сетевая модель стека (магазина) сетевых протоколов OSI/ISO. Посредством данной модели различные сетевые устройства могут взаимодействовать друг с другом. Модель определяет различные уровни взаимодействия систем. Каждый уровень выполняет определённые функции при таком взаимодействии.

    Модель OSI была разработана в конце 1970-х годов для поддержания разнообразных методов компьютерных сетей, которые в это время конкурировали за применение в крупных национальных сетевых взаимодействиях во Франции, Великобритании и США. В 1980-х годах она стала рабочим продуктом группы взаимодействия открытых систем.



    Наиболее часто принято начинать описание уровней модели OSI с 7-го уровня, называемого прикладным, на котором пользовательские приложения обращаются к сети. Модель OSI заканчивается 1-м уровнем — физическим, на котором определены стандарты, предъявляемые независимыми производителями к средам передачи данных:

    • тип передающей среды (медный кабель, оптоволокно, радиоэфир и др.),

    • тип модуляции сигнала,

    • сигнальные уровни логических дискретных состояний (нули и единицы).

    Любой протокол модели OSI должен взаимодействовать либо с протоколами своего уровня, либо с протоколами на единицу выше и/или ниже своего уровня. Взаимодействия с протоколами своего уровня называются горизонтальными, а с уровнями на единицу выше или ниже — вертикальными. Любой протокол модели OSI может выполнять только функции своего уровня и не может выполнять функций другого уровня, что не выполняется в протоколах альтернативных моделей.

    Каждому уровню с некоторой долей условности соответствует свой операнд — логически неделимый элемент данных, которым на отдельном уровне можно оперировать в рамках модели и используемых протоколов: на физическом уровне мельчайшая единица — бит, на канальном уровне информация объединена в кадры, на сетевом — в пакеты (датаграммы), на транспортном — в сегменты. Любой фрагмент данных, логически объединённых для передачи — кадр, пакет, датаграмма — считается сообщением. Именно сообщения в общем виде являются операндами сеансового, представления и прикладного уровней.

    К базовым сетевым технологиям относятся физический и канальный уровни.

    Прикладной уровень (уровень приложений; англ. application layer) — верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью: позволяет приложениям использовать сетевые службы: удалённый доступ к файлам и базам данных, пересылка электронной почты; отвечает за передачу служебной информации; предоставляет приложениям информацию об ошибках; формирует запросы к уровню представления.

    Протоколы прикладного уровня: RDP, HTTP, SMTP, SNMP, POP3, FTP, XMPP, OSCAR, Modbus, SIP, TELNET и другие.

    Определения протокола прикладного уровня и уровня представления очень размыты, и принадлежность протокола к тому или иному уровню, например, протокола HTTPS зависит от конечного сервиса, который предоставляет приложение.

    В том случае если протокол, например, HTTPS, используется для просмотра некоей простой интернет страницы через браузер - его можно рассматривать как протокол прикладного уровня. В том же случае если протокол HTTPS используется как низкоуровневый протокол для передачи финансовой информации, например, по протоколу ISO 8583, то протокол HTTPS будет являтся протоколом уровня представления, а протокол ISO 8583 - будет протоколом уровня приложения. То же касается иных протоколов прикладного уровня.

    Уровень представления (англ. presentation layer) обеспечивает преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с прикладного уровня, на уровне представления преобразуются в формат для передачи по сети, а полученные из сети данные преобразуются в формат приложений. На этом уровне может осуществляться сжатие/распаковка или шифрование/дешифрование, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

    Уровень представлений обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой.

    Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

    Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информацией EBCDIC, например, это может быть мейнфрейм компании IBM, а другая — американский стандартный код обмена информацией ASCII (его использует большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

    Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от доступа несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных. На этом уровне существуют и другие подпрограммы, которые сжимают тексты и преобразовывают графические изображения в битовые потоки, так, что они могут передаваться по сети.

    Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT — формат изображений, применяемый для передачи графики QuickDraw между программами.

    Другим форматом представлений является тэгированный формат файлов изображений TIFF, который обычно используется для растровых изображений с высоким разрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандарт, разработанный Объединённой экспертной группой по фотографии (Joint Photographic Expert Group); в повседневном пользовании этот стандарт называют просто JPEG.

    Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов (англ. Musical Instrument Digital Interface, MIDI) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандарт MPEG, используемый для сжатия и кодирования видеороликов на компакт-дисках, хранения в оцифрованном виде и передачи со скоростями до 1,5 Мбит/с, и QuickTime — стандарт, описывающий звуковые и видео элементы для программ, выполняемых на компьютерах Macintosh и PowerPC.

    Протоколы уровня представления: AFP — Apple Filing Protocol, ICA — Independent Computing Architecture, LPP — Lightweight Presentation Protocol, NCP — NetWare Core Protocol, NDR — Network Data Representation, XDR — eXternal Data Representation, X.25 PAD — Packet Assembler/Disassembler Protocol.

    Сеансовый уровень (англ. session layer) модели обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.

    Протоколы сеансового уровня: H.245 (Call Control Protocol for Multimedia Communication), ISO-SP (OSI Session Layer Protocol (X.225, ISO 8327)), iSNS (Internet Storage Name Service), L2F (Layer 2 Forwarding Protocol), L2TP (Layer 2 Tunneling Protocol), NetBIOS (Network Basic Input Output System), PAP (Password Authentication Protocol), PPTP (Point-to-Point Tunneling Protocol), RPC (Remote Procedure Call Protocol), RTCP (Real-time Transport Control Protocol), SMPP (Short Message Peer-to-Peer), SCP (Session Control Protocol), ZIP (Zone Information Protocol), SDP (Sockets Direct Protocol)…

    Транспортный уровень (англ. transport layer) модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приёма), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Например, UDP ограничивается контролем целостности данных в рамках одной датаграммы и не исключает возможности потери пакета целиком или дублирования пакетов, нарушение порядка получения пакетов данных; TCP обеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и наоборот, склеивая фрагменты в один пакет.

    Протоколы транспортного уровня: ATP (AppleTalk Transaction Protocol), CUDP (Cyclic UDP), DCCP (Datagram Congestion Control Protocol), FCP (Fibre Channel Protocol), IL (IL Protocol), NBF (NetBIOS Frames protocol), NCP (NetWare Core Protocol), SCTP (Stream Control Transmission Protocol), SPX (Sequenced Packet Exchange), SST (Structured Stream Transport), TCP (Transmission Control Protocol), UDP (User Datagram Protocol).

    Сетевой уровень (англ. network layer) модели предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.

    Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).

    Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX (Internetwork Packet Exchange, протокол межсетевого обмена), X.25 (частично этот протокол реализован на уровне 2), CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security).

    Протоколы маршрутизации — RIP (Routing Information Protocol), OSPF (Open Shortest Path First).

    Канальный уровень (англ. data link layer) предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля ошибок, которые могут возникнуть. Полученные с физического уровня данные, представленные в битах, он упаковывает в кадры, проверяет их на целостность и, если нужно, исправляет ошибки (либо формирует повторный запрос повреждённого кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием.

    Спецификация IEEE 802 разделяет этот уровень на два подуровня: MAC (англ. media access control) регулирует доступ к разделяемой физической среде, LLC (англ. logical link control) обеспечивает обслуживание сетевого уровня.

    На этом уровне работают коммутаторы, мосты и другие устройства. Эти устройства используют адресацию второго уровня (по номеру уровня в модели OSI).

    Протоколы канального уровня: ARCnet, ATM, Controller Area Network (CAN), Econet, IEEE 802.3 (Ethernet), Ethernet Automatic Protection Switching (EAPS), Fiber Distributed Data Interface (FDDI), Frame Relay, High-Level Data Link Control (HDLC), IEEE 802.2 (предоставляет функции LLC для подуровня IEEE 802 MAC), Link Access Procedures, D channel (LAPD), IEEE 802.11 wireless LAN, LocalTalk, Multiprotocol Label Switching (MPLS), Point-to-Point Protocol (PPP), Point-to-Point Protocol over Ethernet (PPPoE), Serial Line Internet Protocol (SLIP, устарел), StarLan, Token ring, Unidirectional Link Detection[en] (UDLD), x.25, ARP.

    При разработке стеков протоколов на этом уровне решаются задачи помехоустойчивого кодирования. К таким способам кодирования относится код Хемминга, блочное кодирование, код Рида — Соломона.

    В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой. Это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI (англ.), NDIS, UDI.

    Физический уровень (англ. physical layer) — нижний уровень модели, который определяет метод передачи данных, представленных в двоичном виде, от одного устройства (компьютера) к другому. Составлением таких методов занимаются разные организации, в том числе: Институт инженеров по электротехнике и электронике, Альянс электронной промышленности, Европейский институт телекоммуникационных стандартов и другие. Осуществляют передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов.

    На этом уровне также работают концентраторы, повторители сигнала и медиаконвертеры.

    Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие виды сред передачи данных как оптоволокно, витая пара, коаксиальный кабель, спутниковый канал передач данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются: V.35, RS-232, RS-485, RJ-11, RJ-45, разъёмы AUI и BNC.

    При разработке стеков протоколов на этом уровне решаются задачи синхронизации и линейного кодирования. К таким способам кодирования относится код NRZ, код RZ, MLT-3, PAM5, Манчестер II.

    Протоколы физического уровня: IEEE 802.15 (Bluetooth), IRDA, EIA RS-232, EIA-422, EIA-423, RS-449, RS-485, DSL, ISDN, SONET/SDH, 802.11 Wi-Fi, Etherloop, GSM Um radio interface, ITU и ITU-T, TransferJet[en], ARINC 818, G.hn/G.9960, Modbus Plus.
    2. Для чего используется физическая структуризация сети?
    Предназначение физической структуризации сети

    В сетях с небольшим (10–30) количеством компьютеров чаще всего используется одна из типовых топологий — "общая шина", "кольцо", "звезда" или полносвязная сеть. Все перечисленные топологии обладают свойством однородности, то есть все компьютеры в такой сети имеют одинаковые права в отношении доступа к другим компьютерам (за исключением центрального компьютера при соединении "звезда"). Такая однородность структуры упрощает процедуру наращивания числа компьютеров, облегчает обслуживание и эксплуатацию сети.

    Однако при построении больших сетей однородная структура связей превращается из преимущества в недостаток. В таких сетях использование типовых структур порождает различные ограничения, важнейшими из которых являются: ограничения на длину связи между узлами; ограничения на количество узлов в сети; ограничения на интенсивность трафика, который генерируют узлы сети. Например, технология Ethernet на тонком коаксиальном кабеле позволяет использовать кабель длиной не более 185 метров, к которому можно подключить не более 30 компьютеров. Однако если компьютеры интенсивно обмениваются информацией, иногда приходится снижать число подключенных к кабелю машин до 20, а то и до 10, чтобы каждому компьютеру доставалась приемлемая доля общей пропускной способности сети.

    Для снятия этих ограничений используются особые методы структуризации сети и специальное структурообразующее оборудование — повторители, концентраторы, мосты, коммутаторы, маршрутизаторы. Такого рода оборудование также называют коммуникационным, имея в виду, что с его помощью отдельные сегменты сети взаимодействуют между собой.

    Различают:

    Топологию физических связей (физическую структуру сети). В этом случае конфигурация физических связей определяется электрическими соединениями компьютеров, то есть ребрам графа соответствуют отрезки кабеля, связывающие пары узлов.

    Топологию логических связей (логическую структуру сети). Здесь в качестве логических связей выступают маршруты передачи данных между узлами сети, которые образуются путем соответствующей настройки коммуникацион-ного оборудования.


    Физическая структуризация сети

    Простейшее из коммуникационных устройств — повторитель (repeater) — используется для физического соединения различных сегментов кабеля локальной сети с целью увеличения общей длины сети. Повторитель передает сигналы, приходящие из одного сегмента сети, в другие ее сегменты (рис.1). Повторитель позволяет преодолеть ограничения на длину линий связи за счет улучшения качества передаваемого сигнала — восстановления его мощности и амплитуды, улучшения фронтов и т. п.

    Повторитель, который имеет несколько портов и соединяет несколько физических сегментов, часто называют концентратором (concentrator) или хабом (hub). Эти названия (hub — основа, центр деятельности) отражают тот факт, что в данном устройстве сосредоточены все связи между сегментами сети.


    Использование концентраторов характерно практически для всех базовых технологий локальных сетей — Ethernet, ArcNet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet.

    Нужно подчеркнуть, что в работе любых концентраторов много общего — они повторяют сигналы, пришедшие с одного из их портов, на других своих портах. Разница состоит в том, на каких именно портах повторяются входные сигналы. Так, концентратор Ethernet повторяет входные сигналы на всех своих портах, кроме того, с которого сигналы поступают (рис.2).



    А концентратор Token Ring (рис. 3) повторяет входные сигналы, поступающие с некоторого порта, только на одном порту — на том, к которому подключен следующий в кольце компьютер.



    Добавление в сеть концентратора всегда изменяет физическую топологию сети, но при этом оставляет без изменений ее логическую топологию.

    Как уже было сказано, под физической топологией понимается конфигурация связей, образованных отдельными частями кабеля, а под логической —  конфигурация информационных потоков между компьютерами сети. Во многих случаях физическая и логическая топологии сети совпадают. Например, сеть, представленная на рис.4а, имеет физическую топологию "кольцо". Компьютеры такой сети получают доступ к кабелям кольца за счет передачи друг другу специального кадра — маркера, причем этот маркер также передается последовательно от компьютера к компьютеру в том же порядке, в котором компьютеры образуют физическое кольцо, то есть компьютер A передает маркер компьютеру B, компьютер B — компьютеру С и т. д.

    Сеть, показанная на рис.4б, демонстрирует пример несовпадения физической и логической топологии. Физически компьютеры соединены по топологии "общая шина". Доступ же к шине происходит не по алгоритму случайного доступа, применяемому в технологии Ethernet, а путем передачи маркера в кольцевом порядке: от компьютера A — компьютеру B, от компьютера B — компьютеру С и т. д. Здесь порядок передачи маркера уже не повторяет физические связи, а определяется логическим конфигурированием драйверов сетевых адаптеров. Ничто не мешает настроить сетевые адаптеры и их драйверы так, чтобы компьютеры образовали кольцо в другом порядке, например: В, А, С... При этом физическая структура сети не изменяется.



    Другим примером несовпадения физической и логической топологий сети является уже рассмотренная сеть на рис.2; Концентратор Ethernet поддерживает в сети физическую топологию "звезда". Однако логическая топология сети осталась без изменений — это "общая шина". Так как концентратор повторяет данные, пришедшие с любого порта, на всех остальных портах, то они появляются на всех физических сегментах сети одновременно, как и в сети с физической общей шиной. Логика доступа к сети не меняется: все компоненты алгоритма случайного доступа — определение незанятости среды, захват среды, распознавание и обработка коллизий — остаются в силе.

    Физическая структуризация сети с помощью концентраторов полезна не только для увеличения расстояния между узлами сети, но и для повышения ее надежности. Например, если какой-либо компьютер сети Ethernet с физической общей шиной из-за сбоя начинает непрерывно передавать данные по общему кабелю, то вся сеть выходит из строя, и остается только одно — вручную отсоединить сетевой адаптер этого компьютера от кабеля. В сети Ethernet, построенной с использованием концентратора, эта проблема может быть решена автоматически — концентратор отключает свой порт, если обнаруживает, что присоединенный к нему узел слишком долго монопольно занимает сеть. Концентратор может блокировать некорректно работающий узел и в других случаях, выполняя роль некоторого управляющего узла.


    написать администратору сайта