Главная страница
Навигация по странице:


  • Достоинством накатывания является снижение сил трения между инструментом и обрабатываемым материалом.

  • К методам ударного ППД

  • Центробежно-шариковая обработка осуществляется за счет кинетической энергии стальных шариков (роликов), расположенных на периферии вращения диска

  • При вращении диска под действием центробежной силы шарики отбрасываются к периферии обода, взаимодействуют с обрабатываемой поверхностью и отбрасываются внутрь гнезда.

  • Поверхностное пластическое деформирование: повышает плотность дислокаций в упрочненном слое; измельчает исходную структуру;

  • Расчет глубины деформационного упрочнения поверхностного слоя Упрочненный слой

  • Определение подачи S/z Сущность упрочнения пластическим деформированием

  • Движение дислокаций, генерируемых источником А, будет происходить по наиболее благоприятно ориентированной плоскости скольжения.

  • Упрочнение более интенсивно происходит на границах зерен, мелкое зерно упрочняется интенсивнее крупного.

  • Напряжении текучести (сопротивление деформации) возрастает с уменьшением размера зерна не из-за наличия границы самой по себе, а из-за взаимодействия между зернами, разделенными этой границей.

  • Если дислокация надежно задерживается границей и возможности эстафетной передачи деформации ограничены, то деформация локализуется в микрообъемах, а напряжение текучести возрастает.

  • Наряду с дроблением зерна на блоки происходит разориентация блоков по границам на некоторый угол . При ( (2,5…5)0 граница блоков оказывает сопротивление движению дислокаций.

  • По типу сопротивления дислокаций «леса». Если ( (2…5)0, то границы блоков становятся местом скопления дислокаций, повышающими деформирующее напряжение.

  • Доклад. Основные методы поверхностно пластического деформирования (ппд)


    Скачать 91 Kb.
    НазваниеОсновные методы поверхностно пластического деформирования (ппд)
    Дата05.06.2018
    Размер91 Kb.
    Формат файлаppt
    Имя файлаДоклад.ppt
    ТипДокументы
    #46033


    Основные методы поверхностно пластического деформирования (ППД)

    • ППД - это обработка деталей давлением (без снятия стружки), при которой пластически деформируется только их поверхностный слой. ППД осуществляется инструментом, деформирующие элементы (ДЭ) которого (шарики, ролики или тела иной конфигурации) взаимодействуют с обрабатываемой поверхностью по схемам качения, скольжения или внедрения.


    • При ППД по схеме качения ДЭ (как правило, ролик или шарик) прижимается к поверхности детали с фиксированной силой Р , перемещается относительно нее, совершая при этом вращение вокруг своей оси. В зоне локального контакта ДЭ с обрабатываемой поверхностью возникает очаг пластической деформация (далее очаг деформации - ОД), который перемещается вместе с инструментом, благодаря чему поверхностный слой последовательно деформируется на глубину h , равную глубине распространения ОД. Размеры ОД зависят от технологических факторов обработки - силы Р, формы и размеров ДЭ, подачи, твердости обрабатываемого материала и др.




    • В соответствии с ГОСТ 18296-72 поверхностное пластическое деформирование при качении инструмента по поверхности деформируемого материала называется накатыванием. В свою очередь, накатывание подразделяется на обкатывание и раскатывание в зависимости от того, какие поверхности обрабатываются: выпуклые (валы, галтели), плоские или вогнутые (например, отверстия).


    • Достоинством накатывания является снижение сил трения между инструментом и обрабатываемым материалом.
    • К методам ППД, в которых ДЭ работают по схеме скольжения, относятся выглаживание и дорнование. Для этих процессов ДЭ должны изготавливаться из материалов, имеющих высокую твердость (алмаз, твердый сплав и т.п.) и несклонных к адгезионному схватыванию с обрабатываемым материалом.


    • Алмазное выглаживание применяется для ППД закаленных сталей и деталей маложестких, т.е. тогда, когда невозможно применить обработку накатыванием. Недостатком выглаживания является низкая производительность и невысокая стойкость инструмента.


    • Дорнование - это деформирующее протягивание, калибрование, применяется для обработки отверстий. Это высокопроизводительный процесс, сочетающий в себе возможности чистовой, упрочняющей, калибрующей и формообразующей обработки. Формообразующая обработка применяется для получения на поверхности детали мелких шлицов и других рифлений. Толщина упрочненного слоя при дорновании регулируется натягом, т.е. разностью диаметров дорпа «D» и отверстия «d» заготовки






    • Методы накатывания, выглаживания и деформирующего протягивания относятся к методам статического поверхностного деформирования. Характерным признаком этих методов является стабильность формы и размеров ОД в стационарной фазе процесса.
    • Наряду с этими методами в машиностроении существует большое число методов ППД, основанных на динамическом (ударном) воздействии инструмента на поверхность детали. В этих процессах инструмент внедряется в поверхностный слой детали перпендикулярно профилю поверхности или под некоторым углом к ней.


    • Многочисленные удары, наносимые инструментом по детали по заданной программе или хаотично, оставляют на ней большое число локальных пластических отпечатков, которые в результате покрывают (с перекрытием или без него) всю поверхность. Размеры очага деформации зависят от материала детали, размеров и формы инструмента и от энергии удара по поверхности.




    • К методам ударного ППД относятся чеканка, обработка дробью, виброударная, ультразвуковая, центробежно-ударная обработка и др.
    • Дробеструйная обработка (наклеп) осуществляется за счет кинетической энергии потока чугунной, стальной или другой дроби, который направляется например, роторным дробеметом


    • Центробежно-шариковая обработка осуществляется за счет кинетической энергии стальных шариков (роликов), расположенных на периферии вращения диска


    • При вращении диска под действием центробежной силы шарики отбрасываются к периферии обода, взаимодействуют с обрабатываемой поверхностью и отбрасываются внутрь гнезда.
    • Поверхностное пластическое деформирование:
    • повышает плотность дислокаций в упрочненном слое;
    • измельчает исходную структуру;
    • повышает величину твердости поверхности;
    • уменьшает величину шероховатости;
    • повышает износостойкость деталей;
    • возрастает сопротивление схватыванию;
    • увеличивается придел выносливости


    • Расчет глубины деформационного упрочнения поверхностного слоя
    • Упрочненный слой - это слой, параметры состояния которого отличаются от параметров основного материала. Однако граница раздела упрочненного и основного материала сильно размыта из-за того, что контролируемый параметр изменяется вблизи этой границы с весьма малым градиентом. Поэтому толщина упрочненного слоя определяется всегда с погрешностью, величина которой зависит от метода измерения и присущих ему погрешностей. Совершенно ясно, что первые признаки искажения кристаллической структуры будут обнаружены физическими методами исследования на большей глубине, чем первые признаки увеличения микротвердости или искажения координатной сетки. В связи с этим понятие толщины упрочненного слоя является достаточно условным, а числовые значения, приведенные в различных источниках, могут отличаться на десятки процентов.
    • С позиций механики деформирования глубина упрочнения определяется границей очага деформации. Таким образом, для точного прогнозирования глубины упрочнения имеет значение адекватность теоретической модели и связанная с ней конструкция поля напряжений (деформаций).




    • Точка А/, которая легко выявляется профилографированием очага деформации, определяет длину L передней внеконтактной поверхности волны ВА/.A/K/Д/С/- граница области развитых пластических деформаций, нижняя точка которой определяет толщину упрочняемого слоя h. Поля деформаций, расположенные ниже этой точки, не вызывают заметного изменения сопротивления металла пластическим деформациям. Линии ВК/ и КА/ подходят к ВА/ под углом .


    • Определение подачи S/z


    • Сущность упрочнения пластическим деформированием
    • Поликристаллические твердые тела состоят из большого числа зерен (кристаллов), разделенных между собой границами. Каждое зерно содержит дефекты. Зерна имеют различную ориентировку
    • При приложение внешнего напряжения к металлу пластическая деформация в первую очередь произойдет в зерне, наиболее благоприятно ориентированном к внешнему напряжению (т.е. с наибольшим касательным напряжением). С ростом внешнего напряжения наблюдается постепенное вовлечение остальных зерен в процессе пластической деформации при сохранении сплошности зерна. На рисунке показана схема передачи пластической деформации от зерна к зерну. Под действием внешнего


    • сдвигающего напряжения дислокации генерируемые активным источником В, приходят к границе зерна и задерживаются около нее. По мере накопления дислокаций у точки «Р» растет напряжение. Однако этого недостаточно, чтобы перейти из одного зерна в другое через границу MN. Поэтому распространение скольжения от одного зерна к другому осуществляется за счет того, что при достижении определенного значения напряжения в точке «P» возбуждается источник дислокации в соседнем зерне, например в точке А.




    • Движение дислокаций, генерируемых источником А, будет происходить по наиболее благоприятно ориентированной плоскости скольжения.
    • Рассмотренный механизм торможения дислокаций у границ зерна называется барьерным упрочнением.
    • Упрочнение более интенсивно происходит на границах зерен, мелкое зерно упрочняется интенсивнее крупного.
    • Напряжение текучести «» в зерне диаметром «d», в соответствие с соотношениями Холла- Петча, зависит от составляющих:
    • где: (0- напряжение как результат сопротивления движению дислокаций в теле зерна, не зависящего от размера зерна (внутренне трение);
    • к- константа, характеризующая трудность эстафетной передачи пластической деформации от зерна к зерну.
    • Напряжении текучести (сопротивление деформации) возрастает с уменьшением размера зерна не из-за наличия границы самой по себе, а из-за взаимодействия между зернами, разделенными этой границей.


    • Если дислокация надежно задерживается границей и возможности эстафетной передачи деформации ограничены, то деформация локализуется в микрообъемах, а напряжение текучести возрастает.
    • Существенная локализация деформаций повышает концентрацию напряжений, что приводит к преждевременному разрушению, т.е. снижению пластичности.
    • Наряду с величиной зерна на деформационное упрочнение металлов большое влияние оказывает количество и размер внутризеренных блоков (ячеек). С повышением степени деформации и роста плотности дислокаций происходит дробление зерна на блоки по плоскостям скопления дислокаций.
    • Наряду с дроблением зерна на блоки происходит разориентация блоков по границам на некоторый угол . При ( (2,5…5)0 граница блоков оказывает сопротивление движению дислокаций.
    • По типу сопротивления дислокаций «леса». Если ( (2…5)0, то границы блоков становятся местом скопления дислокаций, повышающими деформирующее напряжение.



    написать администратору сайта