Реферат экономико-мат. модел.. Особенности экономикоматематического моделирования
Скачать 24.68 Kb.
|
Московский международный университет Реферат На тему: «Особенности экономико-математического моделирования» Подготовила: Студентка ЭФК951-1 группы Дивущак Владелина Москва, 2022 Оглавление Введение 1.Экономико-математическое моделирование 1.1 Основные понятия и типы моделей. Их классификация 1.2 Экономико-математические методы. 2. Разработка и применение экономико-математических моделей 2.1 Этапы экономико-математического моделирования Введение Актуальность. Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако, методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания. Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале. Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез. Экономико-математическое моделирование является неотъемлемой частью любого исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовало формированию различного рода моделей экономики. 1.Экономико-математическое моделирование 1.1Основные понятия и типы моделей. Их классификация В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. В общем виде модель можно определить как условный образ реального объекта (процессов), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием. Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процессов). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процессов), хотя на самом деле действительность значительно содержательнее и богаче. Модель - это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте. На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей. Экономико-математические модели - это модели экономических объектов или процессов, при описании которых используются математические средства. Цели их создания разнообразны: они строятся для анализа тех или иных предпосылок и положений экономической теории, логического обоснования экономических закономерностей, обработки и приведения в систему эмпирических данных. В практическом плане экономико-математические модели используются как инструмент прогноза, планирования, управления и совершенствования различных сторон экономической деятельности общества. Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации. По целевому назначению модели делятся на: ·Теоретико-аналитические (используются в исследовании общих свойств и закономерностей экономических процессов); ·Прикладные (применяются в решении конкретных экономических задач, таких как задачи экономического анализа, прогнозирования, управления). По учету фактора времени модели подразделяются на: ·Динамические (описывают экономическую систему в развитии); ·Статистические (экономическая система описана в статистике, применительно к одному определенному моменту времени; это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени). По длительности рассматриваемого периода времени различают модели: ·Краткосрочного прогнозирования или планирования (до года); ·Среднесрочного прогнозирования или планирования (до 5 лет); ·Долгосрочного прогнозирования или планирования (более 5 лет). По цели создания и применения различают модели: ·Балансовые; ·Эконометрические; ·Оптимизационные; ·Сетевые; ·Систем массового обслуживания; ·Имитационные (экспертные). 1.2Экономико-математические методы Как и всякое моделирование, экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта посредством построения и рассмотрения другого, подобного ему, но более простого и доступного объекта, его модели. Практическими задачами экономико-математического моделирования являются, во-первых, анализ экономических объектов, во-вторых, экономическое прогнозирование, предвидение развития хозяйственных процессов и поведения отдельных показателей, в-третьих, выработка управленческих решений на всех уровнях управления. Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей, которые следует понимать как продукт процесса экономико-математического моделирования, а экономико-математические методы - как инструмент. Рассмотрим вопросы классификации экономико-математических методов. Эти методы представляют собой комплекс экономико-математических дисциплин, являющихся сплавом экономики, математики и кибернетики. Поэтому классификация экономико-математических методов сводится к классификации научных дисциплин, входящих в их состав. С известной долей условности классификацию этих методов можно представить следующим образом. ·Экономическая кибернетика: системный анализ экономики, теория экономической информации и теория управляющих систем. ·Математическая статистика: экономические приложения данной дисциплины - выборочный метод, дисперсионный анализ, корреляционный анализ, регрессионный анализ, многомерный статистический анализ, теория индексов и др. ·Математическая экономия и изучающая те же вопросы с количественной стороны эконометрия: теория экономического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространственный анализ, глобальное моделирование. ·Методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объемный раздел, включающий в себя следующие дисциплины и методы: оптимальное (математическое) программирование, сетевые методы планирования и управления, теорию и методы управления запасами, теорию массового обслуживания, теорию игр, теорию и методы принятия решений. В оптимальное программирование в свою очередь входят линейное и нелинейное программирование, динамическое программирование, дискретное (целочисленное) программирование, стохастическое программирование и др. ·Методы и дисциплины, специфичные отдельно как для централизованно планируемой экономики, так и для рыночной (конкурентной) экономики. К первым можно отнести теорию оптимального ценообразования функционирования экономики, оптимальное планирование, теорию оптимального ценообразования, модели материально-технического снабжения и др. Ко вторым - методы, позволяющие разработать модели свободной конкуренции, модели капиталистического цикла, модели монополии, модели теории фирмы и т.д. Многие из методов, разработанных для централизованно планируемой экономики, могут быть оказаться полезными и при экономико-математическом моделировании в условиях рыночной экономики. ·Методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспериментов, методы машинной имитации (имитационное моделирование), деловые игры. Сюда можно отнести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению. В экономико-математических методах применяются различные разделы математики, математической статистики, математической логики. Большую роль в решении экономико-математических задач играют вычислительная математика, теория алгоритмов и другие дисциплины. Использование математического аппарата принесло ощутимые результаты при решении задач анализа процессов расширенного производства, определения оптимальных темпов роста капиталовложений, оптимального размещения, специализации и концентрации производства, задач выбора оптимальных способов производства, определения оптимальной последовательности запуска в производство, задачи подготовки производства методами сетевого планирования и многих других. Для решения стандартных проблем характерны четкость цели, возможность заранее выработать процедуры и правила ведения расчетов. Существуют следующие предпосылки использования методов экономико-математического моделирования, важнейшими из которых являются высокий уровень знания экономической теории, экономических процессов и явлений, методологии их качественного анализа, а также высокий уровень математической подготовки, владение экономико-математическими методами. Прежде чем приступить к разработке моделей, необходимо тщательно проанализировать ситуацию, выявить цели и взаимосвязи, проблемы, требующие решения, и исходные данные для их решения, вести систему обозначений и только тогда описать ситуацию в виде математических соотношений. 2.Разработка и применение экономико-математических моделей 2.1Этапы экономико-математического моделирования Процесс экономико-математического моделирования - это описание экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования, выделив следующие шесть этапов: .Постановка экономической проблемы и ее качественный анализ; 2.Построение математической модели; .Математический анализ модели; .Подготовка исходной информации; .Численное решение; .Анализ численных результатов и их применение. Рассмотрим каждый из этапов более подробно. 1.Постановка экономической проблемы и ее качественный анализ. Главное здесь - четко сформулировать сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта. 2.Построение математической модели. Это - этап формализации экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таком образом, построение модели подразделяется в свою очередь на несколько стадий. Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше «работает» и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности т неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом. Одна из важный особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться «изобретать» модель; сначала необходимо попытаться применить для решения этой задачи уже известные модели. Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели. Если удается доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает и следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные (неизвестные) могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости исходных условий они изменяются, каковы тенденции их изменения и т.д. Аналитической исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели. 4.Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов. Эти затраты не должны превышать эффект от использования дополнительной информации. В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей. 5.Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составление программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации. Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию. 6.Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних. Математические методы проверки могут выявить некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения. Заключение Применение математики в экономической науке, дало толчок в развитии как самой экономической науке, так и прикладной математике, в части методов экономико-математической модели. Пословица говорит: «Семь раз отмерь - Один раз отрежь». Использование моделей есть время, силы, материальные средства. Кроме того, расчёты по моделям противостоят волевым решениям, поскольку позволяют заранее оценить последствия каждого решения, отбросить недопустимые варианты и рекомендовать наиболее удачные. Экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта посредством построения и рассмотрения другого, подобного ему, но более простого и доступного объекта, его модели. Практическими задачами экономико-математического моделирования являются, во-первых, анализ экономических объектов; во-вторых, экономическое прогнозирование, предвидение развития хозяйственных процессов и поведения отдельных показателей; в-третьих, выработка управленческих решений на всех уровнях управления. В работе было выяснено, что экономико-математические модели можно разделить по признакам: ·целевого назначения; ·учета фактора времени; ·длительности рассматриваемого периода; ·цели создания и применения; ·учета фактора неопределенности; ·типа математического аппарата; Описание экономических процессов и явлений в виде экономико-математических моделей базируется на использовании одного из экономико-математических методов, которые применяются на всех уровнях управления. Особенно большую роль приобретают экономико-математические методы по мере внедрения информационных технологий во всех областях практики. Также были рассмотрены основные этапы процесса моделирования, а именно: ·постановка экономической проблемы и ее качественный анализ; ·построение математической модели; ·математический анализ модели; ·подготовка исходной информации; ·численное решение; ·анализ численных результатов и их применение. |