Лекция. Принципы криптографической защиты информации
Скачать 25.9 Kb.
|
Принципы криптографической защиты информации. Криптографические методы защиты основаны на возможности осуществления некой операции преобразования информации, которая может выполняться одним (или более) пользователем ИС, обладающим некоторой секретной частью дополнительной информации. В классической криптографии используется только одна единица конфиденциальной и обязательно секретной информации — ключ, знание которого позволяет отправителю зашифровать информацию, а получателю — расшифровать ее. Именно эта операция зашифрования/расшифрования с большой вероятностью невыполнима без знания секретного ключа. В криптографии с открытым ключом имеется два ключа, по крайней мере один из которых нельзя вычислить из другого. Один ключ используется отправителем для зашифрования информации, сохранность которой должна быть обеспечена. Другой — получателем для обработки полученной информации. Бывают приложения, в которых один ключ должен быть несекретным, а другой — секретным. Основным достоинством криптографических методов защиты информации является обеспечение ими гарантированной стойкости защиты, которую можно рассчитать и выразить в числовой форме (средним числом операций или количеством времени, необходимым для раскрытия зашифрованной информации или вычисления ключей). Средства шифрования могут быть реализованы как аппаратно, так и чисто программно. В любом случае они должны быть сертифицированными, т.е. должны соответствовать определенным требованиям (стандартам). В противном случае, они не могут гарантировать пользователям необходимую стойкость шифрования. Использование в системе защиты для различных целей нескольких однотипных алгоритмов шифрования нерационально. Оптимальным вариантом можно считать систему, в которой средства криптозащиты — общесистемные, т.е. выступают в качестве расширения функций операционной системы и включают сертифицированные алгоритмы шифрования всех типов (блочные и потоковые, с закрытыми и открытыми ключами). Прозрачное шифрование всей информации на дисках, что широко рекомендуется рядом разработчиков средств защиты, оправдано лишь в том случае, когда компьютер используется только одним пользователем и объемы дисков невелики. Но на практике даже персональные компьютеры используются группами из нескольких пользователей. И не только потому, что ПК на всех не хватает, но и в силу специфики работы защищенных систем. Так, автоматизированные рабочие места операторов систем управления используются двумя-четырьмя операторами, работающими посменно, и рассматривать их как одного пользователя нельзя в силу требований разделения ответственности. Очевидно, что в такой ситуации приходится либо отказаться от разделения ответственности и разрешить пользоваться ключом шифра нескольким операторам, либо создавать отдельные закрытые диски для каждого из них и запретить им тем самым обмен закрытой информацией, либо часть информации хранить и передавать в открытом виде, что по сути равносильно отказу от концепции прозрачного шифрования всей информации на дисках. Кроме того, прозрачное шифрование дисков требует значительных накладных расходов ресурсов системы (времени и производительности). И не только непосредственно в процессе чтения-записи данных. Дело в том, что надежное криптографическое закрытие информации предполагает периодичес-кую смену ключей шифрования, а это приводит к необходимости перешиф-рования всей информации на диске с использованием нового ключа (необходимо всю информацию расшифровать с использованием старого и зашифровать с использованием нового ключа). Это требует значительного времени. Кроме того, при работе в системе с шифрованными дисками задержки возникают не только при обращении к данным, но и при запуске программ, что значительно замедляет работу компьютера. Поэтому, использовать криптографическую защиту следует ограниченно, защищая только ту информацию, которую действительно надо закрыть от несанкционированного доступа. Основные сведения о криптографии. Под криптологией (от греческого kruptos — тайный и logos сообщение) понимается наука о безопасности (секретности) связи. Криптология делится на две части: криптографию (шифрование) и криптоанализ. Криптограф пытается найти методы обеспечения секретности и или аутентичности (подлинности) сообщений. Криптоаналитик пытается выполнить обратную задачу: раскрыть шифртекст или подделать его так, чтобы он был принят как подлинный. Одним из основных допущений криптографии является то, что криптоаналитик противника имеет полный шифртекст и ему известен алгоритм шифрования, за исключением секретного ключа. При этих допущениях криптограф разрабатывает систему, стойкую при анализе только на основе шифротекста. На практике допускается некоторое усложнение задачи криптографа. Криптоаналитик противника может иметь фрагменты открытого текста и соответствующего ему шифротекста. В этом случае криптограф разрабатывает систему стойкую при анализе на основе открытого текста. Криптограф может даже допустить, что криптоаналитик противника способен ввести свой открытый текст и получить правильный шифртекст с помощью секретного ключа (анализ на основе выбранного открытого текста), и наконец, — объединить две последние возможности (анализ на основе выбранного текста). Многие из стратегий нарушителя могут быть блокированы с помощью криптографических средств защиты информации, но следует отметить, что большинство стратегий нарушителя связано с проблемами аутентичности пользователя и сообщений. Подсистема криптографической защиты.Подсистема объединяет средства криптографической защиты информации и предназначена для обеспечения целостности, конфиденциальности, аутентичности критичной информации, а также обеспечения юридической значимости электронных документов в ИС. По ряду функций подсистема кооперируется с подсистемой защиты от НСД. Поддержку подсистемы криптографической защиты в части управления ключами осуществляет подсистема управления СЗИ. Структурно подсистема состоит из: ♦ программных средств симметричного шифрования данных; ♦ программно-аппаратных средств цифровой подписи электронных документов (ПАС ЦП). Функции подсистемы предусматривают; ♦ обеспечение целостности передаваемой по каналам связи и хранимой информации; ♦ имитозащиту сообщений, передаваемых по каналам связи; ♦ скрытие смыслового содержания конфиденциальных сообщений, передаваемых по каналам связи и хранимых на носителях; ♦ обеспечение юридической значимости электронных документов; ♦ обеспечение аутентификации источника данных. Функции подсистемы направлены на ликвидацию наиболее распространенных угроз сообщениям в автоматизированных системах: ♦ угрозы, направленные на несанкционированное ознакомление с информацией; ♦ несанкционированное чтение информации на машинных носителях и в ЗУ ЭВМ; ♦ незаконное подключение к аппаратуре и линиям связи; ♦ снятие информации на шинах питания; ♦ перехват ЭМИ с линий связи; ♦ угрозы, направленные на несанкционированную модификацию (нарушение целостности) информации: ♦ изменение служебной или содержательной части сообщения; ♦ подмена сообщения; ♦ изъятие (уничтожение) сообщения. ♦ угрозы, направленные на искажение аутентичности отправителя сообщения: ♦ незаконное присвоение идентификаторов другого пользователя, формирование и отправка электронного документа от его имени (маскарад), либо утверждение, что информация получена от некоего пользователя, хотя она сформирована самим нарушителем; ♦ повторная передача документа, сформированного другим пользователем; ♦ искажение критичных с точки зрения аутентичности полей документа (даты формирования, порядкового номера, адресных данных, идентификаторов отправителя и получателя и др.). ♦ угрозы, связанные с непризнанием участия: ♦ отказ от факта формирования электронного документа; ♦ отказ от факта получения электронного документа или ложные сведения о времени его получения; ♦ утверждение, что получателю в определенный момент была послана информация, которая в действительности не посылалась (или посылалась в другое время). Аутентичность сообщений. Конечной целью шифрования является обеспечение защиты информации от несанкционированного ознакомления, аутентификации обеспечения защиты участников информационного обмена от обмана, осуществляемого на основе имитации, т.е., например подделки шифртекста до прихода подлинного шифртекста, подмены (навязывании) ложной информации после прихода подлинного шифртекста. Под аутентификацией информации понимается установление подлинности информации исключительно на основе внутренней структуры самой информации независимо от источника этой информации, установление законным получателем (возможно арбитром) факта, что полученная информация наиболее вероятно была передана законным отправителем (источником) и что она при этом не заменена и не искажена. Любые преднамеренные и случайные попытки искажений информации обнаруживаются с определенной вероятностью. Наиболее полно проблема аутентичности проявляется в вычислительных сетях, где можно выделить следующие ее виды: Аутентификация пользователя сети — установление подлинности личности пользователя сети, которому требуется доступ к защищаемой информации или необходимо подключиться к сети; Аутентификация сети — установление подлинности сети, к которой получен доступ; Аутентификация хранящихся массивов программ и данных — установление факта, что данный массив не был изменен в течение времени, когда он был вне посредственного контроля, а также решение вопросов об авторстве этого массива данных; Аутентификация сообщений — установление подлинности содержания полученного по каналам связи сообщения и решение вопросов об авторстве сообщения. Решение указанных задач возможно как с применением классических систем шифрования, так и систем с открытым ключом. Криптографические методы защиты информации основаны на использовании криптографических систем, или шифров. Криптосистемы позволяют с высокой степенью надежности защитить информацию путем ее специального преобразования. В криптопреобразовании используется один или несколько секретных параметров, неизвестных злоумышленнику, на чем и основана стойкость криптосистем. Криптосистемы подразделяются на симметричные и несимметричные. В симметричных системах преобразование (шифрование) сообщения и обратное преобразование (дешифрование) выполняются с использованием одного и того же секретного ключа, которым сообща владеют отправитель и получатель сообщения. В несимметричных системах, или системах с открытым ключом, каждый пользователь имеет свою ключевую пару, состоящую из ключа шифрования и ключа дешифрования (открытого и секретного ключа), при этом открытый ключ известен остальным пользователям. Основными методами являются шифрование, цифровая подпись и имитозащита сообщений. Шифрование сообщений позволяет преобразовать исходное сообщение (открытый текст) к нечитаемому виду; результат преобразования называют шифротекстом. Злоумышленник без знания секретного ключа шифрования не имеет возможности дешифровать шифротекст. Для шифрования сообщений, как правило, используются симметричные криптосистемы. Шифрование обеспечивает: ♦ скрытие содержания сообщения; ♦ аутентификацию источника данных, только владелец секретного ключа мог сформировать и отправить шифротекст; однако электронный документ не имеет при этом юридической значимости, так как возможен подлог со стороны получателя, также владеющего секретным ключом. Цифровая подпись обеспечивает: ♦ аутентификацию источника данных, только владелец секретного несимметричного ключа мог сформировать цифровую подпись; получатель имеет только открытый ключ, на котором подпись может быть проверена, в том числе и независимой третьей стороной; ♦ целостность сообщения: злоумышленник не может целенаправленно изменить текст сообщения, поскольку это обнаружится при проверке цифровой подписи, включающей зашифрованную контрольную сумму сообщения; однако он имеет возможность случайно модифицировать шифротекст или навязать ранее переданный шифротекст. ♦ юридическую значимость сообщения: цифровая подпись по свойствам эквивалентна рукописной подписи по невозможности ее подделки, возможности проверки получателем документа и независимой третьей стороной (арбитром) и обеспечением аутентификации создателя подписи. Имитозащита сообщений состоит в формировании контрольной суммы (имитовставки, кода аутентификации сообщения) по криптоалгоритму, добавляемой к сообщению. После этого сообщение с имитовставкой, как правило, шифруется по симметричному криптоалгоритму. Принципы формирования имитовставок (кодов аутентификации сообщений) подробно рассмотрены в аванпроекте "Разработка пакета программных средств обеспечения юридической значимости лицензий посредством цифровой подписи". Имитозащита обеспечивает — целостность сообщения в соответствии со свойствами контрольной суммы. Анализ существующих методов криптографических преобразований.Внастоящее время широкое применение нашли как симметричные, так и несимметричные криптосистемы. Симметричные системы используются в основном для шифрования, а также для выработки криптографических контрольных сумм (имитовставки, хеш-функции). По способу использования средств шифрования информации обычно различают поточное и блочное симметричное шифрование. При поточном шифровании каждый символ исходного текста преобразуется независимо от других, что позволяет осуществлять шифрование одновременно с передачей данных по каналу связи. При блочном шифровании исходный текст преобразуется поблочно, причем преобразование символов в пределах блока является взаимозависимым. Известно большое число алгоритмов блочного шифрования, в том числе принятых в качестве национальных стандартов. Наиболее известен американский алгоритм DES. Шифрование сообщений осуществляется на абонентском или канальном уровне. Средства шифрования реализуются программно, аппаратно-программно или аппаратно. Разработки в области канального шифрования ведутся в основном в странах НАТО. Среди фирм, изготавливающих подобное оборудование, наиболее известными являются: CyLink, Fredericks, Harris, GTE, E-Systems (США), Newbridge Microsystems (Канада), Siemens, Telefunken, Tele Security Timman (Германия), Philips USFA (Нидерланды), Cryptech Belgie (Бельгия), Plessy, Racal, Corros, Marconi (Великобритания). Интересным с точки зрения перспектив развития средств канального шифрования является предложенный фирмой Newbridge Microsystems (Канада) процессор СА20СОЗА для шифрования данных по стандарту DES. Ключ хранится в энергонезависимой постоянной памяти, не имеющей доступа извне. Предлагаются версии процессора с тактовыми частотами 2,5 и 5 МГц. Наиболее важными характеристиками средств шифрования, работающих на канальном уровне, являются: ♦ скорость шифрования; ♦ используемый алгоритм; ♦ режим работы; ♦ тип интерфейса; ♦ возможность работы в сетях с коммутацией пакетов Х.25; ♦ тип возможных к использованию модемов; ♦ протоколы обмена ключевой информацией; ♦ способ ввода ключей; ♦ реализация функций обратного вызова, электронной подписи и др. В основном скорости шифрования равны 64 Кбит/с для синхронного режима и 19,2 Кбит/с для асинхронного. Этого вполне достаточно для работы по выделенным телефонным линиям, но совершенно не приемлемо для обмена зашифрованной информацией по оптоволоконным линиям связи. Для таких приложений могут подойти только высокоскоростные шифраторы CIDEC-HS, CIDEC-HSi, и CIDEC-VHS фирмы Cylink — мирового лидера в производстве средств канального шифрования. Устройство FX-709 также обеспечивает высокую скорость работы, но является мостом для соединения сетей Ethernet через интерфейсы RS-422 и RS-449. Для канального шифрования, как правило, используются потоковые шифры. Главным их достоинством является отсутствие размножения ошибок и высокая скорость. Единственным стандартным методом генерирования последовательностей для поточного шифрования остается метод, применяемый в стандарте шифрования данных DES в режиме обратной связи от выхода. Поэтому многие производители разрабатывают собственные алгоритмы, например фирма British Telecom реализовала в своих приборах B-CRYPT собственный секретный алгоритм В-152. Программа аттестации коммерческих средств защиты связи ССЕР (Commercial COMSEC endorsement program) Агентства национальной безопасности (АНБ) США предусматривает выдачу секретных криптоалгоритмов некоторым фирмам-изготовителям интегральных микросхем США для использования их только в США. Первый такой алгоритм был реализован фирмой Harris Semiconductor в ее криптографическом кристалле с интег-ральными микросхемами HS3447 Cipher. Шифраторы, работающие на низких скоростях, обычно совмещают с модемами (STM-9600, Glo-Warm, Mesa 432i). Для средне- и высокоскоростных шифраторов изготовители обеспечивают совместимость с протоколами V.35, RS-449/422, RS-232 и Х.21. Определенная группа приборов ориентирована на применение в узлах и конечных пунктах сетей с коммутацией пакетов Х.25 (Datacriptor 64, Secure X.25L, Secure X.25H, Telecript-Dat, CD225, KryptoGuard). Управление ключами — принципиально важный вопрос в любой криптосис-теме. Большинство канальных шифраторов американского производства ориен-тировано на иерархический метод распределения ключей, описываемый национальным стандартом ANSI X9.17. В коммерческом секторе получают распространение криптосистемы с открытым распределением ключей. Напри-мер, фирма Cylink помимо реализации ANSI X9.17 имеет собственную запатентованную систему автоматического распределения ключей SEEK. Ввод ключей в шифраторы может выполняться вручную с приборной панели, при помощи специальных карт либо дистанционно. Шифратором Glo-Warm можно управлять с сервера или рабочих станций; он имеет дополнительный внешний модуль дистанционного доступа. Фирма Airtech, одна из первых начавшая производство стандартных встраиваемых блоков шифрования Rambutan, применяет магнитные карты для ввода ключей в канальные шифраторы. Фирма British Telecom выпускает карточку шифрования Lector 3000 для "дорожной" ЭВМ Toshiba TS 200/100 в версии с блоком Rambutan. Блок Rambutan разработан Группой безопасности связи и электронных средств CESG (Communications Electronics Security Group) Правительственного Управления связи Великобритании GCHQ (Government Communications Headguarters) специально для встраивания в аппаратуру, предназначенную для обработки и передачи важной правительственной информации, включающей и информацию с грифом "конфиденциально". Шифраторы фирмы Cylink имеют клавиатуру для ввода ключей и могут передавать сигналы тревоги и состояния прибора. Дистанционная система управления сетью CNMS (Cylink Network Management System) фирмы Cylink может контролировать до 256 шифраторов CIDECHSi из одного центрального пункта. Несимметричные криптосистемы используются для формирования цифровой подписи и шифрования (формирования) симметричных ключей при их рассылке по каналам связи. Среди протоколов распределения ключей на практике используется метод Диффи-Хеллмана и метод цифрового конверта. Среди методов цифровой подписи наибольшее применение нашли RSA-подобные алгоритмы и алгоритмы на основе метода Эль-Гамаля, стандар-тизованные в ряде стран. Наиболее перспективным представляется использование усовершенствованного метода цифровой подписи Эль-Гамаля, который в последние годы стандартизован в США и России. |