Главная страница
Навигация по странице:

  • Электропроводность полупроводников

  • Проводники, диэлектрики, полупроводники: физические явления, свойства. Собственная проводимость и примесная проводимость полупро. 1.1.1 ФОЭ. Проводники, диэлектрики, полупроводники физические явления, свойства. Собственная проводимость и примесная проводимость полупроводников


    Скачать 48.87 Kb.
    НазваниеПроводники, диэлектрики, полупроводники физические явления, свойства. Собственная проводимость и примесная проводимость полупроводников
    АнкорПроводники, диэлектрики, полупроводники: физические явления, свойства. Собственная проводимость и примесная проводимость полупро
    Дата28.02.2021
    Размер48.87 Kb.
    Формат файлаdocx
    Имя файла1.1.1 ФОЭ.docx
    ТипДокументы
    #180489

    Проводники, диэлектрики, полупроводники: физические явления, свойства. Собственная проводимость и примесная проводимость полупроводников.
    По электропроводности вещества можно разделить на четыре группы: диэлектрики, проводники, сверхпроводники и полупроводники.

    Диэлектрики – это вещества, которые существенно препятствуют протеканию через них электрического тока ввиду высокого удельного сопротивления, часто превышающего 108 Ом • м. Диэлектрики, которые применяют в качестве изоляции, например, проводов, обычно обладают на много порядков более высоким сопротивлением.

    Проводники – это материалы, которые почти не препятствуют протеканию по ним электрического тока благодаря низкому удельному сопротивлению, обычно не превышающему 10–5 Ом • м. Металлические проводники используют в кабелях и проводах в качестве токоведущих шин.

    Сверхпроводники – это материалы, которые при охлаждении до некоторой критической температуры резко уменьшают удельное сопротивление до нуля. В результате отсутствуют потери энергии на омическом сопротивлении, что позволяет создавать мощные высокоэффективные кабели, трансформаторы мощностью в мегаватты с высоким КПД и т.п. К сверхпроводникам относят соединения NbN, NbTi, Nb3Sn и другие. У большинства сверхпроводников критическая температура лежит вблизи абсолютного нуля, что снижает практическую пригодность этих материалов.

    Полупроводники – это вещества, удельное сопротивление которых зависит от внешних условий, например, флюктуаций температуры, изменений интенсивности облучения световым потоком и прочего. В результате, в определённых условиях полупроводники могут менять своё удельное сопротивление, и оно может стать со всеми промежуточными градациями либо таким, как у проводников, либо как у диэлектриков. При температуре вблизи абсолютного нуля полупроводники обладают диэлектрическими свойствами, а при нагреве выше определённой критической температуры они проявляют свойства проводников. Зависимость их сопротивления от температуры нелинейна.

    Электропроводность полупроводников

    Собственным полупроводником называется идеально химически чистый полупроводник с однородной кристаллической решеткой на валентной орбите которого находится четыре электрона. В полупроводниковых приборах чаще всего используются кремний Si и германий Ge.



    Ниже показана электронная оболочка атома кремния. В образовании химических связей и в процессе проводимости могут участвовать только четыре электрона внешней оболочки, называемые валентными электронами. Десять внутренних электронов в таких процессах не участвуют.



    Кристаллическая структура полупроводника на плоскости может быть представлена следую­щим образом.



    Если электрон получил энергию, большую ширины запрещенной зоны, он разрывает ковалентную связь и становится свободным. На его месте образуется вакансия, которая имеет положительный заряд, равный по величине заряду электрона и называется дыркой. В химически чистом полупро­воднике концентрация электронов n равна концентрации дырок p.

    Процесс образования пары зарядов электрон и дырка называется генерацией заряда.

    Свободный электрон может занимать место дырки, восстанавливая ковалентную связь и при этом излучая избыток энергии. Такой процесс называется рекомбинацией зарядов. В процессе рекомбинации и генерации зарядов дырка как бы движется в обратную сторону от направле­ния движения электронов, поэтому дырку принято считать подвижным положительным носи­телем заряда. Дырки и свободные электроны, образующиеся в результате генерации носителей заряда, называются собственными носителями заряда, а проводимость полупроводника за счет собственных носителей заряда называется собственной проводимостью проводника.

    Так как у химически чистых полупроводников проводимость существенно зависит от внешних условий, в полупроводниковых приборах применяются примесные полупроводники.



    Если в полупроводник ввести пятивалентную примесь, то 4 валентных электрона восстанав­ливают ковалентные связи с атомами полупроводника, а пятый электрон остается свободным. За счет этого концентрация свободных электронов будет превышать концентрацию дырок. Примесь, за счет которой n>p, называется донорной примесью. Полупроводник, у которого n>p, называется полупроводником с электронным типом проводимости, или полупроводником n -типа.

    В полупроводнике n-типа электроны называются основными носителями заряда, а дыр­ки - неосновными носителями заряда.

    При введении трехвалентной примеси три ее валентных электрона восстанавливают ковалент­ную связь с атомами полупроводника, а четвертая ковалентная связь оказывается не восста­новленной, т. е. имеет место дырка. В результате этого концентрация дырок будет больше концентрации электронов.

    Примесь, при которой p>n, называется акцепторнойпримесью.

    Полупроводник, у которого p>n, называется полупроводником с дырочным типом проводимости, или полупроводником р-типа. В полупроводнике р-типа дырки называются основными носителями заряда, а электро­ны - неосновными носителями заряда.


    написать администратору сайта