Главная страница
Навигация по странице:

  • «Кластерные системы класса BEOWULF»

  • Кластерные системы

  • Кластерные системы класса BEOWULF

  • Список литературы

  • Реферат Кластерные системы класса beowulf


    Скачать 33.3 Kb.
    НазваниеРеферат Кластерные системы класса beowulf
    Дата16.06.2021
    Размер33.3 Kb.
    Формат файлаdocx
    Имя файлаAVS_Litvinov.docx
    ТипРеферат
    #218040

    Министерство науки и высшего образования Российской Федерации

    Федеральное агентство по образованию

    КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСТЕТ им. А.Н. ТУПОЛЕВА – КАИ

    Кафедра прикладной математики и информатики

    Реферат

    «Кластерные системы класса BEOWULF»

    по дисциплине «Архитектура вычислительных систем»

    Выполнил: студент группы 4380

    Литвинов А. Р.


    Казань 2021

    Оглавление


    Реферат 1

    Казань 2021 1

    Введение 3

    Кластерные системы 5

    Кластерные системы класса BEOWULF 8

    Заключение 11

    Список литературы 13

    Введение 3

    Кластерные системы 4

    Кластерные системы класса BEOWULF 6

    Заключение 10

    Список литературы 11



    Введение


    В течение последних лет наблюдался бурный рост производительности микропроцессоров и вычислительной техники на их основе. Однако, не смотря на это, потребность в суперкомпьютерах не снизилась, а наоборот продолжает расти. Многие задачи, требующие решения, являются весьма требовательными к вычислительным ресурсам. А это требует создания вычислительных систем, превышающих самые современные микропроцессоры по производительности во много раз. Становится очевидным, что единственным выходом из этой ситуации становится использование многопроцессорных технологий. Эти технологии имеют массу преимуществ. Одним из них является возможность масштабирования этих систем, а именно изменения объёма вычислительных ресурсов за счёт числа процессоров, используемых в системе. Поэтому многопроцессорность в настоящее время перестаёт быть чертой, исключительно присущей суперкомпьютерам.

    Сама же идея параллельной обработки данных была выдвинута более сотни лет назад до появления первого компьютера Чарльзом Бэббиджем, но существовавшие на тот момент технологии не могли позволить ему реализовать её. И вот, с появлением ЭВМ эти идеи стали воплощаться в жизнь. До недавнего времени этим воплощением были супер ЭВМ, но и им появилась альтернатива. И эта альтернатива - кластер .

    Кластерные системы возникли как более дешевое решение проблемы недостатка вычислительных ресурсов, и основываются на использовании в своей архитектуре широко распространенных и относительно дешевых технологий, аппаратных и программных средств, таких как PC, Ethernet, Linux и т.д. Использование массовых технологии в кластерных системах стало возможным благодаря значительному прогрессу в развитии компонентов обычных вычислительных систем, таких как центральные процессоры, операционные системы, коммуникационные среды.

    Кластерные системы


    «Кластер -- это разновидность параллельной или распределённой системы, которая: состоит из нескольких связанных между собой компьютеров; используется как единый, унифицированный компьютерный ресурс».

    Кластер всегда состоит из узлов, являющихся полноценными компьютерами, которые соединены сетью для выполнения обмена данными. При этом, эти компьютеры не обязательно должны быть однотипными, система может быть и гетерогенной, объединяя в себе компьютеры различной архитектуры - от персональных ЭВМ до сверхпроизводительных супер ЭВМ.

    Кластер может быть как территориально сосредоточен, так и распределён. Построению распределённых кластеров способствует развитие глобальной сети Internet. На наш взгляд, в будущем будет происходить преобладание именно этого типа кластеров, что позволит получить вычислительные мощности огромных объёмов, которые не будут уступать отдельным супер ЭВМ.

    Производительность коммуникационных сетей в кластерных системах определяется несколькими числовыми характеристиками. Основных характеристик две: латентность – время начальной задержки при посылке сообщений и пропускная способность сети, определяющая скорость передачи информации по каналам связи. При этом важны не столько пиковые характеристики, заявленные в стандарте, сколько реальные, достигаемые на уровне пользовательских приложений, например, на уровне MPI-приложений. В частности, после вызова пользователем функции посылки сообщения Send() сообщение последовательно пройдет через целый набор слоев, определяемых особенностями организации программного обеспечения и аппаратуры, прежде, чем покинуть процессор – поэтому существует существенный разбром по стандартам значений латентности. Наличие латентности приводит к тому, что максимальная скорость передачи по сети не может быть достигнута на сообщениях с небольшой длиной.

    При построении кластеров можно выделить два следующих подхода:

    ·в кластерную систему собираются все доступные компьютеры, которые также могут функционировать и отдельно. Например в такую кластерную систему можно объединить компьютеры, находящиеся в учебной аудитории или подключённые к университетской сети;

    ·в кластерную систему целенаправленно соединяются промышленно выпускаемые ЭВМ. При это создаётся мощный вычислительный ресурс. Этот подход позволяет удешевить саму кластерную систему, т.к. не требуется снабжать каждый отдельный узел монитором, клавиатурой и другими периферийными устройствами.

    Кластерные системы являются развитием параллельных систем. Чтобы показать место кластерных систем среди остальных типов параллельных архитектур вычислительных систем нужно привести их классификацию. Параллельные системы могут быть классифицированы по различным критериям.

    Одним из наиболее распространенных способов классификации ЭВМ является систематика Флинна (Flynn), в рамках которой основное внимание при анализе архитектуры вычислительных систем уделяется способам взаимодействия последовательностей (потоков) выполняемых команд и обрабатываемых данных.

    SISD (Single Instruction, Single Data) - системы, в которых существует одиночный поток команд и одиночный поток данных. К такому типу можно отнести обычные последовательные ЭВМ;

    SIMD (Single Instruction, Multiple Data) - системы c одиночным потоком команд и множественным потоком данных. Подобный класс составляют многопроцессорные вычислительные системы, в которых в каждый момент времени может выполняться одна и та же команда для обработки нескольких информационных элементов; такой архитектурой обладают, например, многопроцессорные системы с единым устройством управления. Этот подход широко использовался в предшествующие годы (системы ILLIAC IV или CM-1 компании Thinking Machines), в последнее время его применение ограничено, в основном, созданием специализированных систем;

    MISD (Multiple Instruction, Single Data) - системы, в которых существует множественный поток команд и одиночный поток данных. Относительно этого типа систем нет единого мнения: ряд специалистов считает, что примеров конкретных ЭВМ, соответствующих данному типу вычислительных систем, не существует и введение подобного класса предпринимается для полноты классификации; другие же относят к данному типу, например, систолические вычислительные системы или системы с конвейерной обработкой данных;
    MIMD (Multiple Instruction, Multiple Data) - системы c множественным потоком команд и множественным потоком данных. К подобному классу относится большинство параллельных многопроцессорных вычислительных систем.

    Кластерные системы класса BEOWULF


    Запредельная стоимость промышленных массивно-параллельных компьютеров не давали покоя специалистам, желающим применить в своих исследованиях вычислительные системы сравнимой мощности, но не имеющих возможностей приобрести промышленные супер-ЭВМ. Поиски в этом направлении привели к развитию вычислительных кластеров (не путать с кластерами баз данных и WEB-серверов); технологической основой развития кластеризации стали широкодоступные и относительно недорогие микропроцессоры и коммуникационные (сетевые) технологии, появившиеся в свободной продаже в девяностых годах.

    Вычислительный кластер представляет собой совокупность вычислительных узлов (от десятков до десятков тысяч), объединенных высокоскоростной сетью c целью решения единой вычислительной задачи. Каждый узел вычислительного кластера представляет собой фактически программируемых электронно-вычислительных машин (часто двух- или четырех- процессорный/ядерный SMP-сервер), работающую со своей собственной операционной системой (в подавляющем большинстве Linux(*)); объединяющую сеть выбирают исходя из требуемого класса решаемых задач и финансовых возможностей, практически всегда реализуется возможность удаленного доступа на кластер посредством InterNet.

    Вычислительные узлы и управляющий компьютер обычно объединяют (минимум) две (независимые) сети - сеть управления (служит целям управления вычислительными узлами) и (часто более производительная) коммуникационная сеть (непосредственный обмен данными между исполняемыми на узлах процессами), дополнительно управляющий узел имеет выход в Internet для доступа к ресурсам кластера удаленных пользователей, файл-сервер выполняет функции хранения программ пользователя (рисунок 12). Администрирование кластера осуществляется с управляющей ЭВМ (или посредством удаленного доступа), пользователи имеют право доступа (в соответствие с присвоенными администратором правами) к ресурсам кластера исключительно через управляющий компьютер.

    Windows-кластеры значительной мощности до настоящего времени остаются экзотикой в силу известных причин (несмотря на активно продвигаемые MS решения класса Windows Compute Cluster Server - WCCS).

    Одним из первых кластерных проектов явился проект BEOWULF. Проект "БЕОВУЛЬФ" был заложен в созданном на основе принадлежащей NASA организации GSFC (Goddard Space Flight Center) исследовательском центре CESDIS (Center of Excellence in Space Data and Information Sciences) в 1994 году и стартовал сборкой в GSFC 16шестнадцатиузлового кластера (на процессорах 486DX4/100 MHz, 16 Mb памяти, 3 сетевых адаптера на каждом узле и 3 параллельных 10 Mbit Ethernet-кабелей); вычислительная система предназначалась для проведения работ по проекту ESS (Earth and Space Sciences Project).

    Позднее в подразделениях NASA были собраны другие модели BEOWULF-подобных кластеров: например, theHIVE (Highly-parallel Integrated Virtual Environment) из 64 двухпроцессорных (Pentium Pro/200 MHz, 4 Gb памяти и 5 коммутаторов Fast Ethernet в каждом) узлов. Именно в рамках проекта Beowulf были разработаны драйверы для реализации режима Channel Bonding.

    "Беовульф" - типичный образец многопроцессорной системы MIMD (Multiple Instruction ? Multiple Data), при этом одновременно выполняются несколько программных ветвей, в определенные промежутки времени обменивающиеся данными. Многие последующие разработки во всех странах мира фактически являются кланами Beowulf.

    В 1998 году в национальной лаборатории Лос-Аламос астрофизик Michael Warren с сотрудниками группы теоретической астрофизики построили вычислительную систему Avalon, представляющую Linux-кластер на процессорах DEC Alpha/533 MHz. Первоначально Avalon состоял из 68 процессоров, затем был расширен до 140, в каждом узле установлено 256 MB оперативной памяти, EIDE-жесткий диск 3,2 Gb, сетевой адаптер фирмы Kingston.

    Узлы соединены с помощью четырех коммутаторов Fast Ethernet и центрального двенадцатипортового коммутатора Gigabit Ethernet фирмы 3Com.

    Типичным образцом массивно-параллельной кластерной вычислительной системы являются МВС-1000M (коммуникационная сеть - Myrinet 2000, скорость обмена информацией 120-170 Мбайт/сек, вспомогательные - Fast и Gigabit Ethernet) и МВС-15000ВС.

    Требование максимальной эффективности использования ресурсов вычислительных мощностей (как процессорных, так и оперативной и дисковой памяти) отдельных процессоров кластера неизбежно приводит к снижению "интеллектуальности" операционной системы вычислительных узлов до уровня мониторов; с другой стороны, предлагаются распределенные кластерные операционные системы - например, Amoeba, Chorus, Mach и др.

    Специально для комплектации аппаратной части вычислительных кластеров выпускаются Bladed - сервера (*) - узкие вертикальные платы, включающие процессор, оперативную память (обычно 256 - 512 МБайт при L2-кэше 128 - 256 КБайт), дисковую память и микросхемы сетевой поддержки; эти платы устанавливаются в стандартные "корзины" формата 3U шириной 19 и высотой 5,25 до 24 штук на каждую (240 вычислительных узлов на стойку высотою 180 см). Для снижения общего энергопотребления могут применяться расходующие всего единицы ватт (против 75 W для P4 или 130 W для кристаллов архитектуры IA-64) процессоры Transmeta Crusoe серии TM 5x00 с технологией VLIW; при этом суммарная потребляемая мощность при 240 вычислительных узлах не превышает 1 кВт.

    Заключение


    Как уже было отмечено, в настоящий момент происходит бурное развитие параллельных вычислительных систем и кластерных систем в частности. Как показывает статистика распределения различных параллельных систем в мире, кластерные системы занимают не последнее место по производительности (как максимальной, так и пиковой).

    Итак, подведём итог сказанному, перечислив преимущества и недостатки кластеров.

    Преимущества кластеров .

    1. Наличие общедоступного ПО.

    2.Возможность использования существующей сетевой инфраструктуры.

    3. Не требуется приобретать специализированное оборудование.

    4. Возможность создания гетерогенных вычислительных систем.

    5. Возможность создания систем с произвольным количеством узлов(от двух до нужного количества).

    6. Возможность использования кластера несколькими пользователями одновременно, причём каждый пользователь резервирует лишь необходимые для его вычислений ресурсы.

    Недостатки кластеров .

    1. Скорость обмена между узлами зависит от используемого сетевого оборудования. А, следовательно, желательно использовать наиболее современное и дорогостоящее оборудование.

    Как мы видим из перечисленного, кластерные технологии являются наиболее перспективным направлением для разработок и исследований в области высокопроизводительных вычислительных систем. Они позволяют добиться приемлемых результатов при приемлемом уровне затрат, что является одним из основных аргументов в их пользу.

    Список литературы


    1. 1. Андреев, A.M. Многопроцессорные вычислительные системы. Теоретический анализ, математические модели и применение / A.M. Андреев, Г.П. Можаров, В.В. Сюзев - М.: МГТУ им. Н. Э. Баумана, 2011. - 336с.

    2. Воеводин, B.B. Параллельные вычисления / B.B. Воеводин - M.: Книга по Требованию, 2004. - 602 c.

    3. Гергель, В.П. Высокопроизводительные вычисления для многопроцессорных многоядерных систем / В.П. Гергель - М.: Издательство МГУ, 2010. - 544с.

    4. Черемисинов, Д.И. Проектирование и анализ параллелизма в процессах и программах / Черемисинов, Д.И. - M.: Беларуская Навука, 2011. - 302c.

    5. Шпаковский Г.И. Организация параллельных ЭВМ и суперскалярных процессоров. // Учеб. пособие. -Минск.: Белгосуниверситет, 1996. -296 с.



    написать администратору сайта