Главная страница
Навигация по странице:

  • Химическая реакция горения

  • Механизм процесса горения водорода

  • Кинетика горения водорода

  • Безопасность горения

  • Список использованной литературы

  • Механизм и кинетика горения водорода. реферат физ.хим. Реферат по дисциплине Физикохимия металлургических процессов


    Скачать 74.95 Kb.
    НазваниеРеферат по дисциплине Физикохимия металлургических процессов
    АнкорМеханизм и кинетика горения водорода
    Дата20.05.2022
    Размер74.95 Kb.
    Формат файлаdocx
    Имя файлареферат физ.хим.docx
    ТипРеферат
    #540375

    Министерство науки и высшего образования Российской Федерации

    Федеральное государственное бюджетное образовательное учреждение
    высшего образования

    Волжский политехнический институт (филиал)

    «Волгоградский государственный технический университет»
    Факультет __________Вечерний_____________

    (наименование факультета)

    Кафедра ___________ВХТО___________

    (наименование кафедры)


    РЕФЕРАТ

    по дисциплине «Физико-химия металлургических процессов»
    Механизм и кинетика горения водорода

    Преподаватель доцент___________ Курунина Г.М.

    Должность подпись ФИО

    Студент гр. ВМТ-269 __________ Бирюков В.В.

    подпись ФИО

    Волжский 2022 г.


    Содержание


    1. Введение…………………………………………………………………….3

    2. Химическая реакция горения……………………………………………...4

    3. Механизм процесса горения водорода……………………………………5

    4. Кинетика горения водорода……………………………………………….7

    5. Безопасность горения…………………………………………………….10

    6. Вывод………………………………………………………………………12

    7. Список использованной литературы…………………………………….13


    Введение
    Одной из актуальных проблем является загрязнение окружающей среды и ограниченность энергетических ресурсов органического происхождения. Многообещающим способом решения этих проблем является использование водорода в качестве источника энергии.

    Прежде чем рассматривать вопрос, какая температура сгорания водорода, необходимо вспомнить, что собой представляет это вещество.

    Водород — это самый легкий химический элемент, состоящий всего из одного протона и одного электрона. При нормальных условиях (давление 1 атм., температура 0 C) он присутствует в газообразном состоянии. Его молекула (H2) образована 2 атомами этого химического элемента. Водород является 3-м по распространенности элементом на нашей планете, и 1-м во Вселенной (около 90 % всей материи).

    Водородный газ (H2) не имеет запаха, вкуса и цвета. Он не токсичен, однако, когда содержание его в атмосферном воздухе составляет несколько процентов, то человек может испытывать удушье, по причине недостатка кислорода.

    Любопытно отметить, что хотя с химической точки зрения все молекула H2 идентичны, физические свойства их несколько отличаются. Дело все в ориентации спинов электронов (они ответственны за появление магнитного момента), которые могут быть параллельными и антипараллельными, такую молекулу называют орто- и параводородом, соответственно.


    1. Химическая реакция горения

    Рассматривая вопрос, температуры горения водорода с кислородом, приведем химическую реакцию, которая описывает этот процесс: 2H2 + O2 => 2H2O. То есть в реакции участвуют 3 молекулы (две водорода и одна кислорода), а продуктом являются две молекулы воды. Эта реакция описывает горение с химической точки зрения, и по ней можно судить, что после ее прохождения остается только чистая вода, которая не загрязняет окружающую среду, как это происходит при сгорании органического топлива (бензина, спирта).

    С другой стороны, эта реакция является экзотермической, то есть помимо воды она выделяет некоторое количества тепла, которое можно использовать для приведения в движение машин и ракет, а также для его перевода в другие источники энергии, например, в электричество.



    1. Механизм процесса горения водорода


    Описанная в предыдущем пункте химическая реакция известна любому школьнику старших классов, однако она является очень грубым описанием того процесса, который происходит в действительности. Отметим, что до середины прошлого века человечество не знало, как происходит горение водорода в воздухе, а в 1956 году за ее изучение была присуждена Нобелевская премия по химии.

    В действительности, если столкнуть молекулы O2 и H2, то никакой реакции не произойдет. Обе молекулы являются достаточно устойчивыми. Чтобы горение происходило, и образовывалась вода, необходимо существование свободных радикалов. В частности, атомов H, O и групп OH. Ниже приводится последовательность реакций, которые происходят в действительности при горении водорода:

    • H + O2 => OH + O;

    • OH + H2 => H2O + H;

    • O + H2 = OH + H.

    Что видно из этих реакций? При горении водорода образуется вода, да, верно, но происходит это только, когда группа из двух атомов OH встречается с молекулой H2. Кроме того, все реакции происходят с образованием свободных радикалов, это означает, что запускается процесс самоподдержания горения.

    Таким образом, ключевой момент в запуске этой реакции заключается в образовании радикалов. Они появляются, если поднести к кислород-водородной смеси горящую спичку, либо если нагреть эту смесь выше определенной температуры.

    Инициация реакции. Как было отмечено, сделать это можно двумя способами:

    1.С помощью искры, которая должна предоставить всего 0,02 мДж теплоты. Это очень маленькое значение энергии, для сравнения скажем, что аналогичное значение для бензиновой смеси составляет 0,24 мДж, а для метановой — 0,29 мДж. С уменьшением давления энергия инициации реакции растет. Так, при 2 кПа она составляет уже 0,56 мДж. В любом случае, это очень маленькие значения, поэтому водород-кислородная смесь считается легко воспламеняющейся. 2.С помощью температуры. То есть кислород-водородную смесь можно просто нагревать, и выше некоторой температуры она сама воспламенится. Когда это произойдет, зависит от давления и процентного соотношения газов. В широком интервале концентраций при атмосферном давлении реакция самовозгорания происходит при температурах выше 773-850 К, то есть выше 500-577 C. Это достаточно высокие значения по сравнению с бензиновой смесью, которая начинает самовоспламеняться уже при температурах ниже 300 C.


    1. Кинетика горения водорода



    Кинетическая схема горения водорода


    Горение водорода формально выражается суммарной реакцией:



    Однако эта суммарная реакция не описывает разветвлённые цепные реакции, протекающие в смесях водорода с кислородом или воздухом. В реакциях участвуют восемь компонентов: H2, O2, H, O, OH, HO2, H2O, H2O2. Подробная кинетическая схема химических реакций между этими молекулами и атомами включает более 20 элементарных реакций с участием свободных радикалов в реагирующей смеси. При наличии в системе соединений азота или углерода число компонентов и элементарных реакций существенно увеличивается.

    В силу того, что механизм горения водорода является одним из наиболее простых по сравнению с механизмами горения прочих газообразных топлив, таких, например, как синтез-газ или углеводородные топлива, а кинетические схемы горения углеводородных топлив включают в себя все компоненты и элементарные реакции из механизма горения водорода, он изучается чрезвычайно интенсивно многими группами исследователей. Однако, несмотря на более чем столетнюю историю исследований, этот механизм до сих пор изучен не полностью.

    Критические явления при воспламенении




    Полуостров самовоспламенения смеси H2 + O2. Цифрами 1, 2 и 3 помечены соответственно первый, второй и третий пределы воспламенения.
    При комнатной температуре стехиометрическая смесь водорода и кислорода может храниться в закрытом сосуде неограниченно долго. Однако при повышении температуры сосуда выше некоторого критического значения, зависящего от давления, смесь воспламеняется и сгорает чрезвычайно быстро, со вспышкой или взрывом. Это явление нашло своё объяснение в теории цепных реакций, за которую Н. Н. Семёнов и Сирил Хиншелвуд были удостоены Нобелевской премии по химии 1956 года.

    Кривая зависимости между критическими давлением и температурой, при которых происходит самовоспламенение смеси, имеет характерную Z-образную форму, как показано на рисунке. Нижняя, средняя и верхняя ветви этой кривой называются соответственно первым, вторым и третьим пределами воспламенения. Если рассматриваются только первые два предела, то кривая имеет форму полуострова, и традиционно этот рисунок называется полуостровом воспламенения.

    Спорные теории.

    В 1960-е года американский инженер Уильям Роудс (William Rhodes) якобы открыл «новую форму» воды, коммерциализированную Юллом Брауном (Yull Brown), болгарским физиком, эмигрировавшим в Австралию. «Брауновский газ», то есть фактически смесь кислорода и водорода, получаемая в аппарате электролиза воды, объявлялся способным очищать радиоактивные отходы, гореть как топливо, расслаблять мышцы и стимулировать проращивание семян. Впоследствии итальянский физик Руджеро Сантилли (en:Ruggero Santilli) выдвинул гипотезу, утверждающую существование новой формы воды в виде «газа HHO», то есть химической структуры вида (H × H — O), где «×» представляет гипотетическую магнекулярную связь, а «—» — обычную ковалентную связь. Статья Сантилли, опубликованная в авторитетном реферируемом журнале International Journal of Hydrogen Energy, вызвала жёсткую критику со стороны коллег, назвавших утверждения Сантилли псевдонаучными, однако некоторые другие учёные выступили в поддержку Сантилли



    1. Безопасность горения


    Это важная характеристика воспламеняющейся смеси, поскольку она позволяет судить о том, происходит реакция спокойно, и можно ее контролировать, либо процесс имеет взрывной характер. От чего зависит скорость горения? Конечно же, от концентрации реагентов, от давления, а также от количества энергии "затравки".

    К большому сожалению, водород в широком интервале концентраций способен к взрывному горению. В литературе приводятся следующие цифры: 18,5-59 % водорода в воздушной смеси. Причем на краях этого предела в результате детонации выделяется наибольшее количество энергии на единицу объема.

    Отмеченный характер горения представляет большую проблему для использования этой реакции в качестве контролируемого источника энергии.

    Температура реакции горения


    Теперь мы подошли непосредственно к ответу на вопрос, какая низшая температура сгорания водорода. Она составляет 2321 К или 2048 oC для смеси с 19,6 % H2. То есть температура горения водорода в воздухе выше 2000 oC (для других концентраций она может достигать 2500 oC), и в сравнении с бензиновой смесью — это огромная цифра (для бензина около 800 oC). Если сжигать водород в чистом кислороде, то температура пламени будет еще выше (до 2800 oC).

    Столь высокая температура пламени представляет еще одну проблему в использовании этой реакции в качестве источника энергии, поскольку не существует в настоящее время сплавов, которые могли бы работать длительное время в таких экстремальных условиях.

    Конечно, эта проблема решается, если использовать хорошо продуманную систему охлаждения камеры, где происходит горение водорода.

    Количество выделяемой теплоты


    В рамках вопроса температуры горения водорода любопытно также привести данные о количестве энергии, которая выделяется во время этой реакции. Для разных условий и составов горючей смеси получили значения от 119 МДж/кг до 141 МДж/кг. Чтобы понять, насколько это много, отметим, что аналогичное значение для бензиновой смеси составляет около 40 МДж/кг.

    Энергетический выход водородной смеси намного выше, чем для бензина, что является огромным плюсом для ее применения в качестве топлива для двигателей внутреннего сгорания. Однако, и здесь не все так просто. Все дело в плотности водорода, она слишком низка при атмосферном давлении. Так, 1 м3 этого газа весит всего 90 грамм. Если сжечь этот 1 м3 H2, то выделится около 10-11 МДж теплоты, что уже в 4 раза меньше, чем при сжигании 1 кг бензина (чуть больше 1 литра).

    Приведенные цифры говорят о том, что для использования реакции горения водорода необходимо научиться хранить этот газ в баллонах с высоким давлением, что создает уже дополнительные сложности, как в технологическом вопросе, так и с точки зрения безопасности.

    Вывод
    Центральное понятие химической кинетики - механизм реакции. Он душа химической системы и, увы, почти так же, как и душа, очень трудноуловим. Формально механизм задается списком идущих элементарных реакций. Например, для горения водорода таких реакций более тридцати. Остановим реакцию и сосредоточим свое внимание на структуре. Есть вещества - и нет реакции. Накоплены знания, которые по деталям структуры позволяют улучшать особенности механизма, но догадки эти неполны и несовершенны.


    Список использованной литературы:


    1. https://www.chem21.info/info/1519252/

    2. https://www.wikiwand.com/ru/Горение_водорода#/Получение

    3. https://fb-ru.turbopages.org/fb.ru/s/article/422503/temperatura-goreniya-vodoroda-opisanie-i-usloviya-reaktsii-primenenie-v-tehnike





    написать администратору сайта