Главная страница
Навигация по странице:

  • Содержание: Основная часть

  • Определение. Приливы и отливы

  • Неравенства величин прилива.

  • Распространение и масштабы проявления.

  • СВЕДЕНИЯ О ПРИЛИВАХ В НЕКОТОРЫХ ПОРТАХ МИРА Порт Интервал между приливами

  • Экологические последствия.

  • Влияние на хозяйственную деятельность.

  • Влияние человека на данный процесс.

  • Возможность прогнозирования и управления.

  • Использование энергии приливов.

  • Приливные электростанции (ПЭС).

  • Приливы и отливы, сущность явления приливов и отливов. Реферат. Реферат по Науки о Земле


    Скачать 200.5 Kb.
    НазваниеРеферат по Науки о Земле
    АнкорПриливы и отливы, сущность явления приливов и отливов. Реферат.doc
    Дата13.03.2018
    Размер200.5 Kb.
    Формат файлаdoc
    Имя файлаПриливы и отливы, сущность явления приливов и отливов. Реферат.doc
    ТипРеферат
    #16580
    КатегорияГеология


    МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНЖЕНЕРНОЙ ЭКОЛОГИИ

    Реферат по «Науки о Земле»

    Тема: «Приливы и отливы»


    Выполнил:


    Студент группы Н-30

    Цветков Е.Н.

    Проверила:

    Петрова И.Ф.

    Москва, 2003

    Содержание:



    • Основная часть …………………………………………………….




    1. Определение ..……………......……………………………...

    3

    1. Сущность явления …………………………………………...

    3

    1. Изменение во времени ………………………………………

    6

    1. Распространение и масштабы проявления ………………...

    6

    1. Мифы и легенды …………………………………………….

    9

    1. История исследования ………………………………………

    9

    1. Экологические последствия ………………………………...

    12

    1. Влияние на хозяйственную деятельность …………………

    12

    1. Влияние человека на данный процесс …………………….

    13

    1. Возможность прогнозирования и управления …………….

    13

    • Список литературы ………………………………………………..

    15

























    Определение.
    Приливы и отливы, периодические колебания уровня воды (подъемы и спады) в акваториях на Земле, которые обусловлены гравитационным притяжением Луны и Солнца, действующим на вращающуюся Землю. Все крупные акватории, включая океаны, моря и озера, в той или иной степени подвержены приливам и отливам, хотя на озерах они невелики. [1]

    Самый высокий уровень воды, наблюдаемый за сутки или половину суток во время прилива, называется полной водой, самый низкий уровень во время отлива – малой водой, а момент достижения этих предельных отметок уровня – стоянием (или стадией) соответственно прилива или отлива. Средний уровень моря – условная величина, выше которой расположены отметки уровня во время приливов, а ниже – во время отливов. Это результат осреднения больших рядов срочных наблюдений. Средняя высота прилива (или отлива) – осредненная величина, рассчитанная по большой серии данных об уровнях полных или малых вод. Оба этих средних уровня привязаны к местному футштоку.

    Вертикальные колебания уровня воды во время приливов и отливов сопряжены с горизонтальными перемещениями водных масс по отношению к берегу. Эти процессы осложняются ветровым нагоном, речным стоком и другими факторами. Горизонтальные перемещения водных масс в береговой зоне называют приливными (или приливо-отливными) течениями, тогда как вертикальные колебания уровня воды – приливами и отливами. Все явления, связанные с приливами и отливами, характеризуются периодичностью. Приливные течения периодически меняют направление на противоположное, тогда как океанические течения, движущиеся непрерывно и однонаправленно, обусловлены общей циркуляцией атмосферы и охватывают большие пространства открытого океана.

    В переходные интервалы от прилива к отливу и наоборот трудно установить тренд приливного течения. В это время (не всегда совпадающее со стоянием прилива или отлива) вода, как говорят, «застаивается».

    Приливы и отливы циклически чередуются в соответствии с изменяющейся астрономической, гидрологической и метеорологической обстановкой. Последовательность фаз приливов и отливов определяется двумя максимумами и двумя минимумами в суточном ходе. [3]

    Сущность явления.

    Хотя Солнце играет существенную роль в приливо-отливных процессах, решающим фактором их развития служит сила гравитационного притяжения Луны. Степень воздействия приливообразующих сил на каждую частицу воды, независимо от ее местоположения на земной поверхности, определяется законом всемирного тяготения Ньютона. Этот закон гласит, что две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению масс обеих частиц и обратно пропорциональной квадрату расстояния между ними. При этом подразумевается, что чем более масса тел, тем больше возникающая между ними сила взаимного притяжения (при одинаковой плотности меньшее тело создаст меньшее притяжение, чем большее). Закон также означает, что чем больше расстояние между двумя телами, тем меньше между ними притяжение. Поскольку эта сила обратно пропорциональна квадрату расстояния между двумя телами, в определении величины приливообразующей силы фактор расстояния играет значительно большую роль, чем массы тел.

    Гравитационное притяжение Земли, действующее на Луну и удерживающее ее на околоземной орбите, противоположно силе притяжения Земли Луной, которая стремится сместить Землю по направлению к Луне и «приподнимает» все объекты, находящиеся на Земле, в направлении Луны. Точка земной поверхности, расположенная непосредственно под Луной, удалена всего на 6400 км от центра Земли и в среднем на 386 063 км от центра Луны. Кроме того, масса Земли в 81,3 раза больше массы Луны. Таким образом, в этой точке земной поверхности притяжение Земли, действующее на любой объект, приблизительно в 300 тыс. раз больше притяжения Луны. Распространено представление, что вода на Земле, находящаяся прямо под Луной, поднимается в направлении Луны, что приводит к оттоку воды из других мест земной поверхности, однако, поскольку притяжение Луны столь мало в сравнении с притяжением Земли, его было бы недостаточно, чтобы поднять столь огромный вес.

    Тем не менее океаны, моря и большие озера на Земле, будучи крупными жидкими телами, свободны перемещаться под действием силы бокового смещения, и любая слабая тенденция к сдвигу по горизонтали приводит их в движение. Все воды, не находящиеся непосредственно под Луной, подчиняются действию составляющей силы притяжения Луны, направленной тангенциально (касательно) к земной поверхности, как и ее составляющей, направленной вовне, и подвергаются горизонтальному смещению относительно твердой земной коры. В результате возникает течение воды из прилегающих районов земной поверхности по направлению к месту, находящемуся под Луной. Результирующее скопление воды в точке под Луной образует там прилив. Собственно приливная волна в открытом океане имеет высоту лишь 30–60 см, но она значительно увеличивается при подходе к берегам материков или островов.

    За счет перемещения воды из соседних районов в сторону точки под Луной происходят соответствующие отливы воды в двух других точках, удаленных от нее на расстояние, равное четверти окружности Земли. Интересно отметить, что понижение уровня океана в этих двух точках сопровождается повышением уровня моря не только на стороне Земли, обращенной к Луне, но и на противоположной стороне. Этот факт тоже объясняется законом Ньютона. Два или несколько объектов, расположенные на разных расстояниях от одного и того же источника тяготения и подвергающиеся, следовательно, ускорению силы тяжести разной величины, перемещаются относительно друг друга, поскольку ближайший к центру тяготения объект сильнее всего притягивается к нему. Вода в подлунной точке испытывает более сильное притяжение к Луне, чем Земля под ней, но Земля, в свою очередь, сильнее притягивается к Луне, чем вода, на противоположной стороне планеты. Таким образом, возникает приливная волна, которая на обращенной к Луне стороне Земли называется прямой, а на противоположной – обратной. Первая из них всего на 5% выше второй.

    Благодаря вращению Луны по орбите вокруг Земли между двумя последовательными приливами или двумя отливами в данном месте проходит примерно 12 ч 25 мин. Интервал между кульминациями последовательных прилива и отлива ок. 6 ч 12 мин. Период продолжительностью 24 ч 50 мин между двумя последовательными приливами называется приливными (или лунными) сутками. [2]

    Неравенства величин прилива. Приливо-отливные процессы очень сложны, поэтому, чтобы разобраться в них, необходимо принимать во внимание многие факторы. В любом случае главные особенности будут определяться: 1) стадией развития прилива относительно прохождения Луны; 2) амплитудой прилива и 3) типом приливных колебаний, или формой кривой хода уровня воды. Многочисленные вариации в направлении и величине приливообразующих сил порождают разницу в величинах утренних и вечерних приливов в данном порту, а также между одними и теми же приливами в разных портах. Эти различия называются неравенствами величин прилива.

    Полусуточный эффект. Обычно в течение суток благодаря основной приливообразующей силе – вращению Земли вокруг своей оси – образуются два полных приливных цикла. Если смотреть со стороны Северного полюса эклиптики, то очевидно, что Луна вращается вокруг Земли в том же направлении, в каком Земля вращается вокруг своей оси, – против часовой стрелки. При каждом следующем обороте данная точка земной поверхности вновь занимает позицию непосредственно под Луной несколько позже, чем при предыдущем обороте. По этой причине и приливы и отливы каждый день запаздывают приблизительно на 50 мин. Эта величина называется лунным запаздыванием.

    Полумесячное неравенство. Этому основному типу вариаций присуща периодичность примерно в 143/4 суток, что связано с вращением Луны вокруг Земли и прохождением ею последовательных фаз, в частности сизигий (новолуний и полнолуний), т.е. моментов, когда Солнце, Земля и Луна располагаются на одной прямой. До сих пор мы касались только приливообразующего воздействия Луны. Гравитационное поле Солнца также действует на приливы, однако, хотя масса Солнца намного больше массы Луны, расстояние от Земли до Солнца настолько превосходит расстояние до Луны, что приливообразующая сила Солнца составляет менее половины приливообразующей силы Луны. Однако, когда Солнце и Луна находятся на одной прямой как по одну сторону от Земли, так и по разные (в новолуние или полнолуние), силы их притяжения складываются, действуя вдоль одной оси, и происходит наложение солнечного прилива на лунный. Подобным же образом притяжение Солнца усиливает отлив, вызванный воздействием Луны. В результате приливы становятся выше, а отливы ниже, чем если бы они были вызваны только притяжением Луны. Такие приливы называются сизигийными.

    Когда векторы силы притяжения Солнца и Луны взаимно перпендикулярны (во время квадратур, т.е. когда Луна находится в первой или последней четверти), их приливообразующие силы противодействуют, поскольку прилив, вызванный притяжением Солнца, накладывается на отлив, вызванный Луной. В таких условиях приливы не столь высоки, а отливы – не столь низки, как если бы они были обусловлены только силой притяжения Луны. Такие промежуточные приливы и отливы называются квадратурными. Диапазон отметок полных и малых вод в этом случае сокращается приблизительно в три раза по сравнению с сизигийным приливом. В Атлантическом океане как сизигийные, так и квадратурные приливы обычно запаздывают на сутки по сравнению с соответствующей фазой Луны. В Тихом океане такое запаздывание составляет лишь 5 ч. В портах Нью-Йорк и Сан-Франциско и в Мексиканском заливе сизигийные приливы на 40% выше квадратурных.

    Лунноепараллактическое неравенство. Период колебаний высот приливов, возникающий за счет лунного параллакса, составляет 271/2 суток. Причина этого неравенства состоит в изменении расстояния Луны от Земли в процессе вращения последней. Из-за эллиптической формы лунной орбиты приливообразующая сила Луны в перигее на 40% выше, чем в апогее. Этот расчет справедлив для порта Нью-Йорк, где эффект пребывания Луны в апогее или перигее обычно запаздывает примерно на 11/2 суток относительно соответствующей фазы Луны. Для порта Сан-Франциско разница в высотах приливов, обусловленная нахождением Луны в перигее или апогее, составляет только 32%, и они следуют за соответствующими фазами Луны с запаздыванием на двое суток.

    Суточное неравенство. Период этого неравенства составляет 24 ч 50 мин. Причины его возникновения – вращение Земли вокруг своей оси и изменение склонения Луны. Когда Луна находится вблизи небесного экватора, два прилива в данные сутки (а также два отлива) слабо различаются, и высоты утренних и вечерних полных и малых вод весьма близки. Однако с увеличением северного или южного склонения Луны утренние и вечерние приливы одного и того же типа различаются по высоте, и, когда Луна достигает наибольшего северного или южного склонения, эта разница максимальна. Известны также тропические приливы, называемые так из-за того, что Луна находится почти над Северным или Южным тропиками.

    Суточное неравенство существенно не влияет на высоты двух последовательных отливов в Атлантическом океане, и даже его воздействие на высоты приливов мало по сравнению с общей амплитудой колебаний. Однако в Тихом океане суточная неравномерность проявляется в уровнях отливов втрое сильнее, чем в уровнях приливов.

    Полугодовое неравенство. Его причиной является обращение Земли вокруг Солнца и соответствующее изменение склонения Солнца. Дважды в год в течение нескольких суток во время равноденствий Солнце находится близ небесного экватора, т.е. его склонение близко к 0. Луна также располагается вблизи небесного экватора приблизительно в течение суток каждые полмесяца. Таким образом, во время равноденствий существуют периоды, когда склонения и Солнца и Луны приблизительно равны 0. Суммарный приливообразующий эффект притяжения этих двух тел в такие моменты наиболее заметно проявляется в районах, расположенных вблизи земного экватора. Если в то же самое время Луна находится в фазе новолуния или полнолуния, возникают т.н. равноденственные сизигийные приливы.

    Солнечноепараллактическое неравенство. Период проявления этого неравенства составляет один год. Его причиной служит изменение расстояния от Земли до Солнца в процессе орбитального движения Земли. Один раз за каждый оборот вокруг Земли Луна находится на кратчайшем от нее расстоянии в перигее. Один раз в год, примерно 2 января, Земля, двигаясь по своей орбите, также достигает точки наибольшего приближения к Солнцу (перигелия). Когда эти два момента наибольшего сближения совпадают, вызывая наибольшую суммарную приливообразующую силу, можно ожидать более высоких уровней приливов и более низких уровней отливов. Подобно этому, если прохождение афелия совпадает с апогеем, возникают менее высокие приливы и менее глубокие отливы. [2]

    Изменение во времени.
    Явление как приливы и отливы во времени не изменились, так как движение и Луны, и Солнца, остаются прежними, как и тысячу лет назад – а именно движение этих двух небесных тел оказывают влияние на приливы и отливы на Земле.
    Распространение и масштабы проявления.
    Величина и характер приливов в различных частях побережья Мирового океана зависят от конфигурации берегов, угла наклона морского дна и от ряда других причин. Наиболее типично они проявляются на открытом побережье океана. Проникновение приливных волн во внутренние моря затруднено, и потому амплитуда приливов в них невелика.

    Узкие мелководные Датские проливы надёжно заслоняют от приливов Балтийское море. Теоретические расчёты показывают, что амплитуда колебания высоты уровня воды в Балтике равна приблизительно 10 сантиметрам, но увидеть эти приливы практически невозможно, так как они полностью стираются колебаниями уровня воды под влиянием ветра или изменениями атмосферного давления. Ещё более надёжно защищены от приливной волны наши южные моря – Чёрное и Азовское, сообщающиеся с водами Мирового океана через ряд узких проливов, и внутренние Эгейское и Средиземное моря. Если разница в уровне воды во время прилива и отлива на атлантическом берегу Испании вблизи Гибралтара достигала 3 метров, то в Средиземном море у самого пролива она равна лишь 1,3 метра. В остальных частях моря приливы ещё менее значительны и обычно не превышают 0,5 метра. В Эгейском море и проливах Босфор и Дарданеллы приливная волна ещё сильнее затухает. Поэтому в Чёрном море колебания уровня воды под влиянием приливов менее 10 сантиметров. В Азовском море, соединённом с Чёрным лишь узким Керченским проливом, амплитуда приливов близка к нулю.

    По этой же причине очень невелики приливы и в Японском море – здесь они едва достигают 0,5 метра.

    Если во внутренних морях величина приливов по сравнению с открытым побережьем океана уменьшена, то в заливах и бухтах, имеющее с океаном широкое сообщение, она возрастает. В такие заливы приливная волна входит свободно. Водные массы устремляются вперёд, но, стеснённые суживающимися берегами и не находя выхода, поднимаются вверх и заливают сушу на значительную высоту.

    У входа в Белое море, в так называемой Воронке, приливы почти такие же, как и на побережье Баренцева моря, то есть, равны 4 –5 метрам. На мысе Канин Нос они даже не превышают 3 метров. Однако, входя в постепенно суживающуюся Воронку Белого моря, приливная волна становится всё выше и в Мезенском заливе достигает уже десятиметровой высоты.

    Ещё более значителен подъём уровня воды в самой северной части Охотского моря. Так, у входа в залив Шелихова уровень моря в прилив поднимается до 4 –5 метров, в кутовой же (наиболее удалённой от моря) части залива возрастает до 9,5 метра, а в Пенжинской губе достигает почти 13 метров!

    Очень велики приливы в Ла-Манше. На английском его побережье в маленьком заливе Лайм вода в сизигий поднимается до 14,4 метра, а на французском, у городка Гранвиль, даже на 15 метров.

    Предельных величин приливы достигают на некоторых участках атлантического побережья Канады. В проливе Фробишера (он находится у входа в Гудзонов пролив) – 15,6 метра, а в заливе Фанди (вблизи границы США) – целых 18 метров.

    Иногда влияние морских приливов видно и на реках. В устьевую область приливная волна приходит из открытых районов океана или моря. По мере приближения к берегу уровень повышается, а профиль приливной волны под влиянием уменьшения глубины и особенностей конфигурации берега деформируется. На взморье её передний склон становится круче заднего. От устьевого взморья приливная волна проникает в русловую систему реки. Более солёная вода по дну речного русла, подобно клину, стремительно движется против течения. Столкновение двух встречных потоков, морского и речного, вызывает образование крутого вала, получившего название бора. В реке Цаньтанцзян, впадающей в Восточно-Китайское море к югу от Шанхая, бор достигает высоты 7 - 8 метров, а крутизна волны равняется 70 градусам. Эта страшная водяная стена со скоростью 15 – 16 километров в час проносится вверх по реке, размывая берега и грозя потопить любое судно, вовремя не укрывшееся в спокойном затоне. Мощным бором славится и величайшая река Южной Америки – Амазонка. Там волна высотой 5 – 6 метров распространяется вверх по реке на три тысячи километров от океана. На Меконге волны прилива распространяются до 500 км, на Миссисипи - до 400 км, на Северной Двине – до 140 км . Прилив несёт с собой осолонённые воды в реку. При этом на устьевом участке реки происходит либо полное, либо частичное смешение речных и солёных морских вод, либо имеет место стратифицированное состояние, когда наблюдается резкое различие солёности поверхностных и подстилающих их вод. Солёные воды проникают в устье реки тем дальше, чем больше глубина русла и плотность (солёность) морской воды и меньше расход речных вод. [4]


    СВЕДЕНИЯ О ПРИЛИВАХ В НЕКОТОРЫХ ПОРТАХ МИРА

    Порт

    Интервал между приливами

    Средняя высота прилива, м

    Высота сизигийного прилива, м

     

    ч

    мин

     

     

    м. Моррис-Джесеп, Гренландия, Дания

    10

    49

    0,12

    0,18

    Рейкьявик, Исландия

    4

    50

    2,77

    3,66

    р. Коксоак, Гудзонов пролив, Канада

    8

    56

    7,65

    10,19

    Сент-Джонс, Ньюфаундленд, Канада

    7

    12

    0,76

    1,04

    Барнтко, залив Фанди, Канада

    0

    09

    12,02

    13,51

    Портленд, шт. Мэн, США

    11

    10

    2,71

    3,11

    Бостон, шт. Массачусетс, США

    11

    16

    2,90

    3,35

    Нью-Йорк, шт. Нью-Йорк, США

    8

    15

    1,34

    1,62

    Балтимор, шт. Мэриленд, США

    6

    29

    0,33

    0,40

    Майами-Бич, шт. Флорида, США

    7

    37

    0,76

    0,91

    Галвестон, шт. Техас, США

    5

    07

    0,30

    0,43*

    о. Марака, Бразилия

    6

    00

    6,98

    9,15

    Рио-де-Жанейро, Бразилия

    2

    23

    0,76

    1,07

    Каллао, Перу

    5

    36

    0,55

    0,73

    Бальбоа, Панама

    3

    05

    3,84

    5,00

    Сан-Франциско, шт. Калифорния, США

    11

    40

    1,19

    1,74*

    Сиэтл, шт.Вашингтон, США

    4

    29

    2,32

    3,45*

    Нанаймо, пров.Британская Колумбия, Канада

    5

    00

    ...

    3,42*

    Ситка, шт.Аляска, США

    0

    07

    2,35

    3,02*

    Санрайз, залив Кука, шт. Аляска, США

    6

    15

    9,24

    10,16

    Гонолулу, шт. Гавайи, США

    3

    41

    0,37

    0,58*

    Папеэте, о. Таити, Французская Полинезия

    ...

    ...

    0,24

    0,33

    Дарвин, Австралия

    5

    00

    4,39

    6,19

    Мельбурн, Австралия

    2

    10

    0,52

    0,58

    Рангун, Мьянма

    4

    26

    3,90

    4,97

    Занзибар, Танзания

    3

    28

    2,47

    3,63

    Кейптаун, ЮАР

    2

    55

    0,98

    1,31

    Гибралтар, влад. Великобритании

    1

    27

    0,70

    0,94

    Гранвиль,Франция

    5

    45

    8,69

    12,26

    Лит, Великобритания

    2

    08

    3,72

    4,91

    Лондон, Великобритания

    1

    18

    5,67

    6,56

    Дувр, Великобритания

    11

    06

    4,42

    5,67

    Эйвонмут, Великобритания

    6

    39

    9,48

    12,32

    Рамси, о. Мэн, Великобритания

    10

    55

    5,25

    7,17

    Осло, Норвегия

    5

    26

    0,30

    0,33

    Гамбург, Германия

    4

    40

    2,23

    2,38

    * Суточная амплитуда прилива.

    [3]
    Мифы и легенды.
    Долгое время причины, вызывающие приливы, оставались непонятными. В древности их объясняли дыханием живущего в море божества Океана, или следствием дыхания планеты. Высказывались и другие фантастические предположения о природе приливов. (также см. п. История исследования)
    История исследования.
    Явление морских приливов было замечено очень давно. В V веке до нашей эры о нём уже писал древнегреческий историк Геродот. Долгое время причины, вызывающие приливы, оставались непонятными. В древности их объясняли дыханием живущего в море божества Океана, или следствием дыхания планеты. Высказывались и другие фантастические предположения о природе приливов. Между тем уже в весьма отдалённые времена простые жители приморских земель не только знали об особенностях приливов, но и связывали их с положением луны. Древние финикийцы – лучшие мореплаватели античного мира – были убеждены, что три движения моря управляются Луной: одно из них можно наблюдать ежедневно, второе – ежемесячно, третье – ежегодно.

    На островах Самоа ещё задолго до прихода туда европейцев жители заранее очень точно высчитывали время приливов, руководствуясь положением и фазами Луны. На коралловых рифах у берегов Самоа в огромном количестве живут морские черви палоло – излюбленное лакомство самоанцев. Дважды в год (в октябре и ноябре) черви покидают риф и всплывают к поверхности моря, где их и ловят. Каждый раз палоло "приходят" среди ночи во время прилива на шестые сутки после полнолуния и потом ещё две ночи подряд. На Самоа не было календаря, не велось летосчисления, но наблюдательные самоанцы к долгожданной ночи запасали сети и корзины и никогда не ошибались в сроках лова.

    Из европейских учёных первым обратил внимание на связь приливов с движением Луны философ Р. Декарт (1596 – 1650). Он подметил, что время наступления приливов связано с положением нашего естественного спутника над горизонтом, а амплитуда зависит от фазы луны. Связь между Луной и приливами он установил, а вот правильно объяснить её не смог. Согласно теории Декарта Луна, проходя по небосводу, давит на воздух, окружающий Землю, а воздух, в свою очередь, давит на воду, заставляя её понижаться. Теория приливов Декарта была совершенно непохожа на господствовавшие в то время взгляды Галилея на приливы.

    Галилей отказался от идеи Кеплера о гравитационном притяжении, которую он считал вызывающей сожаление уступкой средневековью. (Кеплер в своей "Новой астрономии" (1609г.), содержавшей общие рассуждения о силе тяжести, объяснял приливы как результат гравитационного притяжения, с которым Луна действует на поверхность океана.) Сам Галилей верил, что приливы вызываются влиянием вращения Земли на море и что само существование приливов является доказательством того, что Земля движется, и тем самым косвенным подтверждением коперниковской системы. Теория приливов Галилея была изложена им в 1595г., и окончательный её вариант появился в 1632 г. в "Dealogi sopra i due massimi sismi del mondo, Tolecaico e Coperniciano". Галилей предположил, что в каждой точке земной поверхности происходят постоянные изменения в скорости, зависящие от того, совпадают ли направления орбитального и осевого вращения Земли. Под орбитальным здесь понималось движение Земли вокруг Солнца в течение года, а под осевым – вращение каждые 24 часа вокруг своей оси. Изменения скорости каждой отдельной точки Земли вызывают возмущения в морском дне, которые, передаваясь воде, вызывали приливы. Галилей пытался объяснить наблюдаемые времена и высоты приливов, также как и их изменения от места к месту, как результат ограничений, наложенных на первоначальную силу, вызываемую движениями Земли вокруг Солнца и своей оси, конфигурацией морского дна.

    Эти три подхода к объяснению происхождения морских приливов – галилеев, декартов и ранние версии гравитационной теории (наиболее полно изложенные у Кеплера) были основным содержанием "теории" морских приливов в середине ХVII века. Ни одна из них ни тогда, ни через некоторое время не смогла занять место другой, и все три имели своих почитателей и последователей, также как и критиков. До настоящего объяснения устройства Вселенной, так же как морских приливов, пришлось, однако, подождать до рождения в Англии Исаака Ньютона. Он сумел в своих "Началах" не только сформулировать основные законы механики, но и показать, как на их основе можно объяснить многие загадочные явления, наблюдаемые на нашей планете. В первую очередь это, пожалуй, относится к объяснению приливов в Мировом океане. Теория приливов Ньютона предполагает, что в поле приливообразующей силы поверхность океана приобретает фигуру равновесия. Если считать, что океан покрывает твёрдую оболочку Земли непрерывным слоем одинаковой глубины, то такой поверхностью будет эллипсоид вращения - эллипсоид прилива, большая ось которого всегда направлена на Луну. Поверхность эллипсоида двумя выпуклостями – "горбами" – поднимается выше среднего уровня покоя океана, а между ними широким поясом, охватывающим весь твёрдый шар, - пояс малых вод – лежит ниже среднего уровня. Эллипсоид, следуя за луной, делает один оборот в течение месяца, а твёрдое тело внутри эллипсоида делает один оборот в сутки, что и создаёт в каждой точке тела периодические колебания уровня приливного типа. В течение суток Луна продвигается в ту же сторону, что и Земля (при её вращении) по своему пути на расстояние, соответствующее 50 минутам (Луна обращается вокруг Земли за 271/3 дня). Поэтому от момента одной полной воды до другой должно проходить не 12 часов, а 12 ч 25 мин.

    Так как Луна имеет склонение, периодически изменяющееся в пределах от 23,5° S до 23,5° N, то большая ось эллипсоида переменно наклонена к плоскости экватора. Это и создаёт суточное неравенство прилива в амплитудах и временах. Иногда это приводит к полному изменению картины прилива. На параллели будет уже наблюдаться только одна полная вода в сутки. Прилив из полусуточного (две полные и две малые воды в сутки) становится суточным. Ньютон смог дать вполне законченное объяснение такой трансформации приливов, и это было его первой теорией так называемых неравенств прилива.

    Ньютон не упустил из вида, что Солнце, с точки зрения механизма возникновения приливообразующих сил, также должно приводить к аналогичным эффектам, что и действие Луны. В некотором смысле его действие должно быть даже проще. Ведь вращение земли составляет 24 часа ( а не 24ч 50 мин как у Луны), так что солнечный прилив будет иметь период равный точно 12 ч. Правда, он может уступать по мощности лунному и несмотря на то, что масса Солнца больше массы Луны, так что притягивать водные частицы оно должно сильнее. Это было бы так, если бы не огромная разница в расстояниях от Земли до Луны и до Солнца. Расчёт солнечного эллипсоида, сделанный Ньютоном, показал, что величины солнечного прилива в 2,17 раз меньше лунного. Имея теперь два равноправных эллипсоида: солнечный и лунный, Ньютон смог дать вполне наглядное объяснение сизигийным и квадратурным приливам. Когда оба эллипсоида складываются, т.е. когда приливообразующие силы Луны и Солнца действуют в одном направлении (а это бывает в сизигии – при полнолунии или новолунии), то высокая вода максимальна. В квадратуре, наоборот, она минимальна (солнечный эллипсоид "вычитается" из лунного).

    Ньютону удалось также заметить, что такие важные астрономические эффекты как изменение расстояния Луны от Земли в течение месяца и расстояния от Земли до Солнца в течение года приведут, естественно, к соответствующему изменению величин приливообразующих сил и к особым долгопериодным аномалиям в ходе приливов. Последние носят названия параллактических неравенств, наличие которых было также объяснено Ньютоном.

    Ньютон обнаружил, что в рамках его теории путём учёта изменений в склонениях Луны и Солнца можно объяснить и такой казалось бы малозначительный факт, подмеченный уже к тому времени наблюдателями, что в разных местах вечерний прилив выше, чем утренний в одно время года, и ниже в другое. Поскольку между весенним и осенним равноденствием Солнце имеет северное склонение (лунная орбита почти не меняет своего склонения относительно солнца), то линия из центра Земли к Луне всегда будет на солнечной стороне, т.е. в северных широтах. Эта линия – ось приливного эллипсоида, так что летом дневной прилив выше ночного, а зимой когда склонение Солнца южное – наоборот.

    Приходится лишь удивляться, как Ньютон смог в то время объяснить практически все основные особенности приливов. Видимо, хорошее знание астрономии позволило ему сразу уловить причины аномалий приливов, связанные с изменением во времени взаимного расположения Земли, Солнца и Луны.

    Теория морских приливов, созданная Ньютоном и известная в настоящее время под названием статическая (потому что предполагалось существование равновесного эллипсоида в каждый момент времени), открыла всем глаза на природу приливов и их особенности. Это было блестящим достижением. Но вот один факт из приливных наблюдений не мог не смущать Ньютона и послужил зародышем дальнейшего развития теории приливов. Факт этот заключался в том, что наблюдаемые приливы могли сильно запаздывать или наоборот опережать статические приливы.

    Чтобы объяснить несоответствия, отмеченные в статической теории, динамическая теория прилива рассматривает явление не в статике, а в движении, как волну. Эта теория была выдвинута П. Лапласом (1749 – 1827), развивалась Дж. Эри, Дж. Дарвином, А. Дудсоном и продолжает совершенствоваться.

    В 1773 – 1775 гг. в своей знаменитой работе "Небесная механика" Лаплас впервые сформулировал динамические уравнения движения жидкости под действием приливообразующих (периодических) сил. Основное отличие динамической теории от статической заключалось в том, что не требовалась мгновенная реакция жидкости на действие приливообразующих сил Ньютона. Естественно, что как частный случай из динамической теории должна была получаться статическая. Лапласу в своей теории удалось показать то, что ускользнуло от Ньютона, а именно, решающую роль в характере приливов глубины водоёмов, так как период свободных колебаний приливных волн зависит от неё. Лаплас сделал первые попытки применения теории к данным наблюдений над приливами во французском порту Брест, так как ему было ясно, что успехи в предсказании приливов теперь должны зависеть от понимания гидродинамики больше, чем от знания астрономии. В Бресте с 1711 до 1715 г. проводились довольно детальные наблюдения над колебаниями уровня моря. Но они были далеки от совершенства. А новые наблюдения, инициированные Лапласом, начались только в 1806 г. Таким образом, эпоха, когда наблюдения над морскими приливами стали использовать для проверки теории, началась только с ХIХ века.

    Для практической деятельности человека, в частности для судовождения, очень важно заранее знать уровень воды в любое время суток и в любом месте. Для этого создаются специальные карты и таблицы приливов. По инициативе англичанина Уэвелла в 1834 г. в течение двух недель были сделаны наблюдения над приливами и отливами по всему побережью Великобритании и Ирландии, а затем они были повторены в июне 1835 г., причём в то же самое время производились наблюдения от м. Нордкап до Гибралтарского пролива и от устья реки Св. Лаврентия до устьев Миссисипи. Такая программа наблюдений являлась следствием того, что Уэвелл решил построить фактически первую карту приливов в Мировом океане. В 1833 г. в "Философских трудах" эта карта была опубликована как приложение к его статье "Опыт построения первой карты котидальных линий". Котидальные линии, как пишет Уэвелл, те, которые соединяют точки, в которых в одно и то же время отмечается высокая вода. Они показывают гребень приливной волны и тем самым дают сведения о прикладном часе (время между прохождением Луны через меридиан и моментом наступления полной воды) в разных местах. Первые таблицы приливов были составлены в 1870 г. английским учёным У. Кельвином. [4]
    Экологические последствия.
    В зимнее время приливно- отливные явления, перемешивающие водные массы, как правило, задерживают начало льдообразования. Однако в дальнейшем приливо-отливные явления непрестанно взламывают ледяной покров, причём на открывающихся пространствах чистой воды идёт интенсивное льдообразование, вследствие чего общее количество льдов увеличивается. [2]
    Влияние на хозяйственную деятельность.
    Прежде приливно-отливные явления приводили лишь к разрушениям или создавали известные неудобства. Изучив их природу, человек начал использовать эту пока ещё почти необузданную силу. Так построена полуэкспериментальная Кислогубская приливная электростанция (ПЭС). Существуют проекты строительства ПЭС в Мезенском заливе Белого моря и других местах.

    Таким образом, “обуздав” силу приливов и отливов человечество может решить много проблем с энергетикой. [3]
    Влияние человека на данный процесс.
    Человек на процесс приливов и отливов повлиять никак не может, так как этот процесс связан с притяжением Луны и Солнца. Людям остается только прогнозировать их и использовать энергию приливов и отливов в своих интересах.
    Возможность прогнозирования и управления.

    Измерение уровней приливов осуществляется при помощи устройств различных типов.

    Футшток – это обычная рейка с нанесенной на нее шкалой в сантиметрах, прикрепляемая вертикально к пирсу или к опоре, погруженной в воду так, что нулевая отметка находится ниже наиболее низкого уровня отлива. Изменения уровня считывают непосредственно с этой шкалы.

    Поплавковый футшток. Такие футштоки используются там, где постоянное волнение или мелководная зыбь затрудняют определение уровня по неподвижной шкале. Внутри защитного колодца (полой камеры или трубы), вертикально установленного на морском дне, помещается поплавок, который соединен с указателем, закрепленным на неподвижной шкале, или пером самописца. Вода проникает в колодец сквозь небольшое отверстие, расположенное значительно ниже минимального уровня моря. Его приливные изменения через поплавок передаются на измерительные приборы.

    Гидростатический самописец уровня моря. На определенной глубине размещается блок резиновых мешков. По мере изменения высоты прилива (слоя воды) меняется гидростатическое давление, которое фиксируется измерительными приборами. Автоматические регистрирующие устройства (мареографы) также могут применяться для получения непрерывной записи приливо-отливных колебаний в любой точке.

    Таблицы приливов. При составлении таблиц приливов используются два основных метода: гармонический и негармонический. Негармонический метод всецело базируется на результатах наблюдений. Кроме того, привлекаются характеристики портовых акваторий и некоторые основные астрономические данные (часовой угол Луны, время ее прохождения через небесный меридиан, фазы, склонения и параллакс). После внесения поправок на перечисленные факторы расчет момента наступления и уровня прилива для любого порта является чисто математической процедурой.

    Гармонический метод является отчасти аналитическим, а отчасти основан на данных наблюдений за высотами приливов, проводившихся в течение по меньшей мере одного лунного месяца. Для подтверждения этого типа прогнозов для каждого порта необходимы длительные ряды наблюдений, поскольку за счет таких физических явлений, как инерция и трение, а также сложной конфигурации берегов акватории и особенностей рельефа дна возникают искажения. Поскольку приливо-отливным процессам присуща периодичность, к ним применяется анализ гармонических колебаний. Наблюдаемый прилив рассматривается как результат сложения серии простых составляющих волн прилива, каждая из которых вызвана одной из приливообразующих сил или одним из факторов. Для полного решения используется 37 таких простых составляющих, хотя в некоторых случаях дополнительные компоненты сверх 20 основных пренебрежимо малы. Одновременная подстановка 37 констант в уравнение и собственно его решение осуществляется на компьютере. [3]

    Использование энергии приливов. Разработаны четыре метода использования энергии приливов, но наиболее практичным из них является создание системы приливных бассейнов. При этом колебания уровня воды, связанные с приливо-отливными явлениями, используются в системе шлюзов так, что постоянно поддерживается перепад уровней, позволяющий получать энергию. Мощность приливных электростанций непосредственно зависит от площади бассейнов-ловушек и потенциального перепада уровней. Последний фактор, в свою очередь, является функцией амплитуды приливо-отливных колебаний. Достижимый перепад уровней, безусловно, наиболее важен для производства электроэнергии, хотя стоимость сооружений зависит от площади бассейнов. В настоящее время крупные приливные электростанции действуют в России на Кольском п-ове и в Приморье, во Франции в эстуарии р.Ранс, в Китае близ Шанхая, а также в других районах земного шара. [3]

    Приливные электростанции (ПЭС). Для создания экономичной приливной электростанции необходимо сочетание необычайно большого перепада уровней при приливе и отливе (6 м и более) с особенностями береговой линии, позволяющими создать плотину и водный бассейн соответствующих размеров. На Земле не так много мест, где выполняются эти условия: побережья штата Мэн (США) и провинции Нью-Брансуик (Канада), некоторые заливы Желтого моря, Персидский залив, Аляска, некоторые места Аргентины, юг Англии, север Франции, север европейской России и ряд заливов Австралии. Но даже в таких подходящих местах, как залив Пассамакуодди на границе штата Мэн и провинции Нью-Брансуик, ПЭС в настоящее время вряд ли могли бы по стоимости вырабатываемой электроэнергии конкурировать с современными ТЭС.

    В проектах ПЭС обычно предусматривается создание двух бассейнов – верхового и низового – с водопропускными отверстиями и затворами. Верховой бассейн наполняется во время прилива, а затем опорожняется в низовой, опорожнившийся при отливе. [3]

    Итак, человек не может управлять приливом (отливом), но использует энергию от этих процесса. Уровень развития гидроэнергетики в разных странах и на разных континентах неодинаков. Больше всего гидроэлектроэнергии производят Соединенные Штаты, за ними идут Россия, Украина, Канада, Япония, Бразилия, КНР и Норвегия.

    Список литературы.

    1. Большая советская энциклопедия (в 30 томах) гл.ред. А.М.Прохоров Изд-е 3-е. М., «Советская энциклопедия», 1976. т.17 стр. 63-65

    2. Дрейк Ч., Имбри Дж., Кнаус Дж., Турекиан К. Океан сам по себе и для нас. М., Наука, 1982 г, 168c.

    3. http://www.krugosvet.ru по мат. Шулейкин В.В. Физика моря. М., 1968
      Гарвей Дж. Атмосфера и океан. М., 1982

    4. http://www.rubricon.ru раздел «Большая советская энциклопедия» Н. Н. Парийский. по мат...: Шокальский Ю. М., Океанография, Л., 1959; Дуванин А. И., Приливы в море, Л., 1960; Дарвин Д. Г., Приливы и родственные им явления в солнечной системе, пер. с англ., М. — П., 1923; Ламб Г., Гидродинамика, пер. с англ., М. — Л., 1947, гл. 8; Молоденский М. С., Упругие приливы, свободная нутация и некоторые вопросы строения Земли, «Тр. Геофизического института АН СССР», 1953, № 19; Мельхиор П., Земные приливы, пер. с англ., М., 1968; Парийский Н. Н., Кузнецов М. В. и Кузнецова Л, В., О влиянии океанических приливов на вековое замедление вращения Земли, «Физика земли», 1972, № 2, 12; Siebert М., Atmospheric tides, в кн.: Advances in geophysics, v. 7, N. Y. — L., 1961.





    написать администратору сайта